Из чего делают полиэтилен? Производство полиэтилена
Из чего делают полиэтилен? Производство полиэтилена
- Создано: 02.02.2018 17:17
История знает множество случаев, когда востребованные в той или иной отрасли материалы были получены в качестве побочного продукта при проведении научных опытов.
Ярким тому примером могут послужить анилиновые красители, которые совершили настоящий переворот в легкой промышленности. Аналогичная история случилась и с полиэтиленом.
История открытия
Впервые материал был случайно получен в 1899 году химиком Гансом фон Пехманном вследствие разогрева диамезотана. Химик обратил внимание на плотный и напоминающий воск материал, осевший на дно пробирки, однако эта случайность оказалось позабытой, и лишь через три десятилетия побочный продукт был вновь получен М. Перрином и Дж. Паттоном. В 1936 году был получен патент на низкоплотный полиэтилен, а уже через пару лет стартовало массовое производство.
Особенности
Полученный материал представляет собой белоцветный и твердый полимер, относящийся к органическим соединениям. Ключевым сырьем для получения полиэтилена служит этилен, от которого и пошло название. Данный газ полимеризуется при низком и высоком давлении, в результате чего получаются сырьевые гранулы для дальнейшей эксплуатации. В некоторых случа ях материал производится в порошковом виде.
Существует множество разновидностей данного материала, каждая из которых обладает своими особенностями и сферой применения. Полиэтилен может отличаться по степени давления в процессе производства, плотности и многим другим аспектам. В гранулированные вариации в процессе производства могут добавляться разнообразные красители, позволяющие получить тот или иной цвет.
Свойства
Материал устойчив к влаге, к множеству растворителей, органическим и неорганическим кислотам, а также не реагирует на соль. В процессе горения выделяется парафиновый запах, присутствует голубоватое свечение и слабый огонь. Материал разлагается при контакте с азотной кислотой, фтором и хлором. В процессе старения полиэтилена происходит образование поперечных связей между молекулярными цепями, из-за чего он становится хрупким.
Производство линейного полиэтилена
Метод производства варьируется в зависимости от типа материала. В случае линейной вариации полиэтилена температура нагрева должна достигать отметки 120 °С, давление в пределах 4 Мпа, а катализатором выступает смесь металлоорганического соединения с хлоридом титана. Процесс производства включает в себя выпадение материала в виде хлопьев, которые затем отделяют от раствора с дальнейшим процессом грануляции.
Производство полиэтилена низкого давления
ПНП может производиться тремя способа. В основном применяется суспензионная полимеризация, требующая постоянного перемешивания сырья и катализатора для запуска процесса. Второй способ — это полимеризация в растворе с определенной температурой и катализатором, которому свойственно вступать в реакцию, а потому метод не слишком эффективен. Последний из способов представляет собой газофазную полимеризацию, которая представляет собой процесс смешивания сырьевых газовых фаз под воздействием диффузии.
Производство полиэтилена высокого давления
Такая разновидность может быть получена при температурном режиме в диапазоне от 200 до 250°С. В качестве катализатора может применяться органический пероксид. Давление должно быть в диапазоне 150-300 МПа. В первой фазе масса находится в жидком состоянии, после чего отправляется к сепаратору, а затем к гранулятору.
Сырье для производства полиэтилена — Справочник химика 21
Пиролиз нефтяного и газового сырья относится к термическим процессам. Целевое назначение его — получение газообразных олефинов, в первую очередь этилена, а также пропилена, бутадиена и бутиленов, являющихся сырьем для производства полиэтилена и полипропилена, этилового спирта, синтетического каучука и ряда других продуктов. Наряду с газом при пиролизе образуется смола, выход которой тем больше, чем тяжелее сырье пироли- [c.86]Пиролиз. Установки пиролиза бензиновых фракций на заводах ведущих нефтяных держав используют для получения этилена-сырья для производства полиэтилена. На российских заводах планируется проведение реконструкции установок с целью увеличения производительности и использования на них в качестве сырья более тяжелых фракций. [c.260]
В свою очередь, этилен и пропилен служат исходным сырьем для производства полиэтилена, хлорвинила, полипропилена. Эти продукты производятся путем реакции полимеризации. [c.47]
В 20-е годы прошлого века важное значение в качестве сырья для органического синтеза приобрели продукты переработки нефти. В частности, этилен оказался ценным сырьем для производства полиэтилена, поливинилхлорида, этилового спирта, ацетальдегида, уксусной кислоты.
Сырьем для производства полиэтилена является этилен [c.7]
Основным сырьем для производства полиэтилена и полипропилена являются этилен и пропилен. В зависимости от метода производства полиэтилена, исходная этиленовая фракция должна быть различной концентрации и с различным допустимым качественным и количественным составом примесей. [c.23]
Исходное сырье. Исходным сырьем для производства полиэтилена является этилен. Этилен получают в основном из газов, образующихся при крекинге и пиролизе нефти, а также термическим разложением этана, пропана и бутана (при 800 °С). Например [c.92]
Что является основным сырьем для производства полиэтилена низкой плотности и источники его получения [c.63]
Сырьем для производства полиэтилена является этилен, выделяемый из газовых смесей, получаемых при пиролизе и крекинге нефтепродуктов, попутных и природных газов. [c.500]
Сырье для производства полиэтилена [c.14]
Использование углеводородного сырья для производства полиэтилена и полипролилена, искусственных волокон, фенола, этилового спирта и ацетона, аммиака и карбамида, метанола и формальдегида открыло широкие возможности для комплексной химизации народного хозяйства, значительного повышения эффективности общественного производства. [c.9]
На некоторых месторождениях, например Уренгойском, нестабильный конденсат подается на ГПЗ на расстояние 700 км. Для предотвращения образования газовых пробок за счет выделения метана и этана при снижении давления в продуктопроводе на УКПГ дополнительно устанавливается оборудование для деэтанизации конденсата. Поток (11) из теплообменника 2 подается в колонну (на схеме не показана), в которой из конденсата отделяются метан и этан в газообразном состоянии. Этот газ называется газ деэтанизации . На Уренгойском УКПГ предусматривается выделение чистого этана — сырья для производства полиэтилена.
Исходньм сырьем для производства полиэтилена служит газ этилен, получаемый главным образом при пиролизе и крекинге нефти. Полиэтилен представляет собой высокомолекулярный парарн.то есть высокомолекулярный продукт полимеризаоди этилена, микромолекулы которого имеют линейное строение с небольшим числом боковых ответвлений. Молекулярная масса полиэтилена в зависимости от метода и режима полимеризации колеблется от десятков тысяч до нескольких миллионов. Полиэтилен — кристаллический полимер. При температуре около 20 с степень кристалличности полимера достигает 50-905 в зависимости от метода получения полиэтилена. [c.64]
На другом предприятии разделение пирогаза осуществляется конденсационпым методом. Основной продукцией установки являются этилен концентрацией 99,9%, служащий сырьем для производства полиэтилена высокого давления, и пропилен концентрацией 96%, побочной продукцией — остаточный газ, метан, этановая и пропановая фракции. Необходимое охлаждение достигается за [c.167]
Сырьем для производства полиэтилена служит этилен, получаемый высокотемпературным пиролизом нефтяных фракций или высокотемпературным крекингом пропана и бутана при 800 °С в трубчатых печах. Для полимеризации применяют этилен высокой степени чистоты (99,99% С2Н4), так как присутствие примесей может привести к обрыву полимерной цепи и снижению массы моля полимера. Особенно опасны примеси в сырье, поступающем на полимеризацию по радикальному механизму. [c.357]
Сырьем для производства полиэтилена слун ит этилен — С2Н4 — бесцветный газ, представляющий простейший непредельный углеводород класса олефинов. [c.30]
Этиленовая и пропиленовая фракции, которые служат исходным сырьем для производства полиэтилена или полипропиле-
У нас теперь есть и своя первичная переработка нефти и конденсата. Это также дает значительные денежные поступления и создает возможности для инвестирования проектов. Но, подчеркиваю, без сторонних инвесторов нам все равно не обойтись. Особенно при строительстве собственной газовой электростанции, а также для производства серополимерного цемента и самой серы в гранулированном виде. Большие резервы у нас имеются не только для получения серы, но и для лучшего использования углеводородного сырья. Например, астраханский природный газ содержит этан, который является ценнейшим сырьем для производства полиэтилена. Впрочем, по нашим подсчетам, этот способ гораздо эффективнее (почти на четверть), чем получать этот продукт из так называемого прямогонного бензина. Цены полиэтилена на мировом рынке высоки, что сулит нам определенную выгоду. К тому же в нем нуждается и сама Россия (если в западных странах ка человека приходится [c.11]
Технология производства полиэтилена | ЮНИТРЕЙД
Полиэтилен – полимер, синтезируемый путем полимеризации этилена в различных условиях и при разных катализаторах. В зависимости от температуры, давления и присутствия разных катализаторов возможно получение материалов с принципиально различными свойствами.
Сырье для изготовления полиэтилена
- Мономер – этилен. Представляет собой простейший олефин (или алкен), при комнатной температуре это бесцветный горючий газ, который легче воздуха.
- Вещества, необходимые для прохождения реакции. Для полиэтилена высокого давления (ПВД) может применяться кислород или пероксид в качестве инициатора реакции полимеризации. Для полиэтилена низкого давления (ПНД) используют катализаторы Циглера – Натты.
- Другие мономеры, которые могут участвовать в реакции при изготовлении сополимеров этилена с улучшенными свойствами. Например, бутен или гексен.
- Присадки и вспомогательные вещества, которые модифицируют итоговые товарные свойства материала. К примеру, некоторые присадки увеличивают долговечность материала, некоторые – ускоряют процесс кристаллизации и т.п.
Технология производства полиэтилена
На практике встречается три вида полиэтилена: низкого, среднего и высокого давления. Принципиальная разница существует между материалом низкого и высокого давления, полиэтилен среднего давления можно считать разновидностью ПНД. Потому рассматривать стоит два кардинально различных процесса полимеризации:
- Полиэтилен высокого давления (или низкой плотности) получают при температуре не менее 200 °C, при давлении от 150 до 300 МПа, в присутствии инициатора кислорода. В промышленных условиях применяют автоклавы и трубчатые реакторы. Полимеризация проходит в расплаве. Получаемое жидкое сырье гранулируют, на выходе получают небольшие белые гранулы.
- Полиэтилен низкого давления (или высокой плотности) изготавливается при температуре 100 — 150 °C при давлении до 4 МПа. Обязательное условие прохождения реакции – присутствие катализатора Циглера – Натты, в промышленных условиях чаще всего применяется смесь хлорида титана и триэтилалюминий или другие алкилпроизводные вещества. Чаще всего полимеризация проходит в растворе гексана. После прохождения полимеризации вещество проходит грануляцию в вакуумных условиях, приобретая товарную форму.
Технология производства линейного полиэтилена средней плотности и низкой плотности
Отдельно следует сказать о производстве линейного полиэтилена. Он отличается от обычного полимера тем, что имеет особую структуру: большое количество коротких молекулярных цепочек, дающих материалу особые свойства. Продукт сочетает эластичность, легкость и увеличенную прочность.
Процесс производства предполагает присутствие других мономеров для реакции сополимеризации, чаще всего – бутена или гексена, в редких случаях – октена. Наиболее эффективный способ производства – полимеризация в жидкой фазе, в реакторе с температурой около 100 °C. Для повышения плотности линейного полиэтилена применяют металлоценовые катализаторы.
Технология производства полиэтилена различных видов
Первый опыт полимеризации этилена в конце XIX века получил выходец из России – учёный Густавсон, проведя этот процесс с катализатором AlBr3. На протяжении долгих лет полиэтилен производился в небольших объемах, но в 1938 году процесс промышленного производства освоили англичане. В то время метод полимеризации был ещё не совершенен.
1952 год совершил прорыв в процессе промышленного производства полиэтилена. Немецкий химик Циглер изобрёл эффективный вариант полимеризации этилена под действием металл-органических катализаторов. Впрочем, настоящая технология производства полиэтилена основана именно на данном методе.
Сырье
Исходным материалом для получения является этен – простейший представитель ряда алкенов. Простота данного способа производства сильно зависит от наличия этилового спирта, который используется как сырьё. Современные промышленные линии для получения полимера разрабатывают с учётом их работы на нефтяных и попутных газах – легкодоступных фракций нефти.
Такие газы выделяются при пиролизе или крекинге нефтепродуктов при очень высоких температурах и содержат в себе примеси h3, Ch5, C2H6 и другие газы. Попутный газ в свою очередь содержит такие компоненты как газы-парафины, поэтому при подвергании их термической обработке с высоким выходом получают этилен.
Технология производства полиэтилена высокого давления
Процесс получения ПЭ идёт по радикальному механизму. При проведении применяют разного рода инициаторы для снижения активационного порога молекулы. В качестве примера таковых можно привести перекись водорода, органические перекиси, О2, нитрилы. Радикальный механизм, в общем, не имеет отличий от обычной полимеризации:
- 1 стадия – инициирование;
- 2 стадия – увеличение цепи;
- 3 стадия – обрыв цепи.
Цепь инициируется посредством выделения свободных радикалов при термической обработке их источника. Этен реагирует с выделившимся радикалом, наделяется определённой Еакт, увеличивая тем самым число молекул мономера вокруг себя. В дальнейшем наблюдается нарастание цепи.
Технология процесса
Существует два варианта процесса полимеризации – либо полиэтилен образуется в массе, либо в суспензии. Первый получил наибольшее распространение и представляет собой совокупность процессов.
Газ этилен, являющийся смесью, а не чистым веществом, вначале проходит путь фильтрации через тканевый фильтр, задерживающий механические примеси. Далее к очищенному этену подводят инициатор в баллоне, объём которого рассчитывается исходя из условий процесса. Поправка делается на наибольший выход полимера.
После, смесь транспортируют, фильтруют и подвергают сжатию в две стадии. На выходе из реактора получают практически чистый полиэтилен с примесью этилена, от которого избавляются дросселированием смеси в приёмнике под низким давлением.
Технология производства полиэтилена низкого давления
Источниками сырья для получения данного вида полиэтилена служат чистый, без примесей этилен и катализатор – триэтилат алюминия и тетрахлорид Ti. Заменой Al(C2H5)3 может послужить как хлорид диэтилалюминия, так и дихлорид этилата алюминия. Катализатор получается в 2 стадии.
Технология процесса
Для данного процесса получения ПЭ низкого давления характерна как периодичность, так и непрерывность. От выбора технологии зависит и схема процесса, каждая их которых различна по конструкции оборудования, объёму реакторов, методу очистки полиэтилена от примесей и др.
Самая распространённая схема получения полимера включает три непрерывных стадии: полимеризация сырья, очистка продукта от остатков катализатора и его высушивание. Аппараты для катализаторной подачи выделяют в мерники пятипроцентный раствор смешанного катализатора, после чего он поступает в бак, в котором смешивается с органическим растворителем до необходимой концентрации в 0.2%. Из бака готовая смесь катализатора отводится в реактор, где поддерживается при необходимом давлении.
Этилен подводится в реактор снизу, где впоследствии перемешиваясь с катализатором, образует рабочую смесь. Для производства полиэтилена при пониженном давлении характерно загрязнение продукта остатками катализаторной смеси, которые изменяют его окраску на коричневую. Очистка основного продукта производится нагреванием смеси, в результате чего происходит разрушение катализатора, дальнейшее отделение примесей и их прямая фильтрация от полиэтилена.
Увлажнённый продукт поступает на сушку в сушильные камеры бункера, где полностью очищается на кипящем слое азота (T = 373 K). Сухой порошок высыпается из бункера на пневмолинию, где отправляется на гранулирование. На эту же линию отправляется пыль с частицами полиэтилена, оставшаяся после очистки азота.
Производство полиэтилена
Полиэтилен занимает первое место в мировом производстве полимеров, синтезируемых методом полимеризации. Одним из методов производства является полимеризация этилена под высоким давлением. Этилен получают пиролизом предельных углеводородов в печах пиролиза с получением пирогаза.
Производством полиэтилена занимаются все крупные компании нефтехимической промышленности. Главным сырьем, из которого получают полиэтилен, является этилен. Производство осуществляется при низком, среднем и высоком давлениях. Как правило, он выпускается в гранулах, которые имеют диаметр от 2 до 5 миллиметров, иногда в виде порошка. На сегодняшний день известны четыре основных способа производства полиэтилена. В результате, получают:
- полиэтилен высокого давления (ПВД)
- полиэтилен низкого давления (ПНД)
- полиэтилен среднего давления (ПСД)
- линейный полиэтилен высокого давления (ЛПВД)
Полиэтилен высокого давления давления образуется при высоком давлении в результате полимеризации этилена, компримированного до высокого давления, в автоклаве или в трубчатом реакторе. Полимеризация в реакторе осуществляется по радикальному механизму под воздействием кислорода, органических пероксидов, ими являются лаурил, бензоил или их смесей. Этилен смешивают с инициатором, затем нагревают до 700°С и сжимают компрессором до 25 МПа. После этого он поступает в первую часть реактора, в которой его нагревают до 1 800°С, а потом во вторую часть реактора для осуществления полимеризации, которая происходит при температуре в пределах от 190 до 300°С и давлении от 130 до 250 МПа. Всего этилен находится в реакторе не более 100 секунд. Степень его превращения составляет 25%. Она зависит от типа и количества инициатора. Из полученного полиэтилена удаляется тот этилен, который не прореагировал, после чего продукт охлаждают и упаковывают. ПВД производят в виде как неокрашенных, так и окрашенных гранул.
Производство полиэтилена низкого давления осуществляется по трем основным технологиям:
- Полимеризация, происходящая в суспензии
- Полимеризация, происходящая в растворе. Таким раствором служит гексан
- Газофазная полимеризация
Наиболее распространенным способом считается полимеризация в растворе. Полимеризация в растворе осуществляется в температурном промежутке от 160 до 2 500°С и давлении от 3,4 до 5,3 МПа. Контакт с катализатором осуществляется примерно на протяжении 10-15 минут. Выделение полиэтилена из раствора производится удалением растворителя сначала в испарителе, а после этого в сепараторе и в вакуумной камере гранулятора. Гранулированный полиэтилен пропаривается водяным паром. ПНД производится в виде как неокрашенных, так и окрашенных гранул, а иногда и в порошке.
Производство полиэтилена среднего давления осуществляется в результате полимеризации этилена в растворе. Полиэтилен среднего давления получается при температуре примерно 150°С, под давлением не более 4 МПа, в присутствии катализатора. ПСД из раствора выпадает в виде хлопьев. Продукт, полученный вышеописанным образом, отличается средневесовым молекулярным весом не более 400 тысяч, степенью кристалличности не более 90%.
Производство линейного полиэтилена высокого давления осуществляется при помощи химической модификации ПВД. Процесс происходит при температуре 150°С и примерно 3,0-4,0 МПа. Линейный полиэтилен низкой плотности по своей структуре напоминает полиэтилен высокой плотности, однако он отличается более длинными и многочисленными боковыми ответвлениями. Производство линейного полиэтилена выполняется двумя способами:
- Газофазная полимеризация
- Полимеризация в жидкой фазе – наиболее популярный в настоящее время способ. Она осуществляется в реакторе со сжиженным слоем. В реактор непрерывно подается этилен и отводится полимер с сохранением в реакторе постоянного уровня сжиженного слоя. Процесс происходит при температуре около 100°С, давлении от 0,689 до 2,068 МПа
Эффективность данного способа полимеризации в жидкой фазе ниже, чем у газофазного, однако для него характерны и свои плюсы, а именно: размер установки намного меньше, чем у оборудования для газофазной полимеризации, и гораздо ниже капиталовложения.
Практически аналогичным является способ в реакторе с устройством для перемешивания с применением циглеровских катализаторов. При этом образуется максимальный выход продукта. Не так давно для производства линейного полиэтилена стали использовать технологию, в результате которой применяются металлоценовые катализаторы. Такая технология дает возможность получить более высокую молекулярную массу полимера, благодаря чему возрастает прочность изделия. ПВД, ПНД, ПСД и ЛПВД отличаются друг от друга, как по своей структуре, так и по свойствам, соответственно, и используются они для решения различных задач. Кроме вышеперечисленных способов полимеризации этилена имеются и иные, только в промышленности они распространения не получили.
На сегодняшний день полимер выпускается двух основных марок ПВД и ПНД.
Существуют и другие виды полиэтилена, каждый из которых имеет свои свойства и сферу применения. В гранулированный полимер в процессе производства добавляются различные красители, позволяющие получить черный полиэтилен, красный или любого другого цвета.
Получение полиэтилена высокого давления происходит в автоклавах, трубчатых реакторах. Марок ПВД изготовленных в автоклаве, согласно ГОСТу, существует восемь. Из трубчатого реактора получают двадцать один тип полиэтилена высокого давления.
Для синтеза ПНД требуется соблюдение следующих условий:
- температурный режим – от 200 до 250°С
- катализатор – чистый кислород, пероксид (органический)
- давление от 150 до 300 МПа
Полимеризированная масса в первой фазе имеет жидкое состояние, после чего перемещается в сепаратор, далее в гранулятор, где происходит формовка гранул готового материала. Качества ПЭВД используются для производства упаковочных пленок, термопленок, многослойной упаковки. Также полиэтилен высокого давления применяется в автомобильной, химической, пищевой промышленностях. Из него делают качественные прочные трубы, используемые в жилом секторе.
Блок-схема
Важнейшими задачами предприятий по производству полиэтилена являются модернизация оборудования, совершенствование технологии пиролиза, конверсии, повышение мощности производства. В этом направлении «ЛЕННИИХИММАШ» выполняет следующие виды работ:
- разработка оборудования для оснащения печей пиролиза при их модернизации
- обследование существующего состояния предприятия
- анализ, технико-экономическое обоснование и выбор оптимального варианта реконструкции
- модернизация оборудования
- проектирование зданий и сооружений
Основное оборудование производства полиэтилена:
- реакторный блок
- компрессоры
- блоки рецикла высокого и среднего давления (отделитель, сепаратор, теплообменник)
- станция горячей воды с насосами
- холодильная установка
- насосы
- емкости, в т.ч. с перемешивающим устройством
Предварительное обследование существующего состояния оборудования
Холодильники рецикла высокого давления
Трубчатый реактор
Отделитель низкого давления V=12 м3 | Узел конфекционирования |
Опыт «ЛЕННИИХИММАШ»
В период активного строительства в СССР заводов по производству из пирогаза этилена и пропилена для последующей выработки полимерных материалов ЛЕННИИХИММАШ являлся основным разработчиком и поставщиком колонного и теплообменного оборудования низкотемпературных блоков для установок различной мощности от 45 до 300 тыс.т этилена в год (Э-45, ЭП-60, Э-100, Э-200, ЭП-300). В последующие годы для действующих производств выполнялись работы по их реконструкции с целью повышения производительности по перерабатываемому пирогазу, реализованы технические решения по стабилизации работы установок, снижению потерь целевых продуктов (повышение коэффициента извлечения), повышению качества продукции. При этом проводилось оснащение установок дополнительной аппаратурой, замена контактных устройств колонн, оптимизация технологической схемы. В низкотемпературных блоках этиленовых производств при разработке колонной аппаратуры использованы результаты проведенных ЛЕННИИХИММАШ научно-исследовательских работ, разработанные методики гидравлического расчета тарелок, результаты обследования блоков разработанного оборудования на этиленовых производствах. Для производства полиэтилена высокого давления для Новополоцкого, Сумгаитского, Томского комбинатов и производства в Германии ЛЕННИИХИММАШ было разработано специальное оборудование: поршневые этиленовые компрессора (бустер-компрессор, компрессора этилена высокого давления на оппозитной базе (I каскада – до давления 25 МПа и II каскада – до 230 МПа), реакторное оборудование, емкости. Это оборудование продолжает успешно эксплуатироваться и в настоящее время.
В состав действующего производства входят:
- Установка производства ПЭВД с трубчатым реактором производительностью 50 тыс. т/год (процесс фирмы АТО — Франция)
- Установка получения ПЭВД с автоклавным реактором (две технологические линии мощностью по15 тыс. т/год каждая, общей производительностью – 30 тыс. т/год) процесс фирмы ICI- Англия
Специалистами ЛЕННИИХИММАШ было проведено обследование, в процессе которого выявлены следующие резервы по основному и вспомогательному оборудованию:
По установке с трубчатым реактором резерв имеются резервы по производительности, что делает целесообразным не заменять установку в полном объеме. Возможна частичная модернизация с увеличением мощности основных технологических блоков:
- реакторный блок без демонтажа реактора
- блок компрессии с частичной заменой оборудования без изменения строительной части
- блок рецикла низкого давления сохранится без крупных изменений
- блок рецикла высокого давления требует значительной реконструкции
Предложено проектирование новой холодильной установки, которая значительно увеличит производительность, составлен перечень нового и модернизируемого оборудования блоков с основными техническими характеристиками.
Вариант реконструкция трубчатого реактора – переход на трехзонный
реактор во 2 и 3 вариантах реконструкции с введением жидкостного
инициирования
Схема работы холодильной установки
Модернизация компрессоров — Мульти компрессор бустер/первый каскад
фирмы Burckhardt
Предложено три варианта реконструкции. В зависимости от объема реконструкции суммарная производительность двух производств может быть повышена с 80 тыс.т ПЭ в год до:
- Вариант 1 – 90 тыс. т/год
- Вариант 2 – 130 тыс.т/год
- Вариант 3 – 128 тыс.т/год
В 2016 году в связи с реконструкцией цеха пиролиза и очистки газа завода этилена ПАО «Казаньоргсинтез» разработаны основные технические решения, а в 2017 году ведется техническое проектирование наружной установки « Четырехкамерная печь пиролиза этана П-810/815/820/825», в составе узла пиролиза этановой и пропановой фракции в трубчатых печах. Целью работы является привязка 4-х камерной печи, проектируемого и поставляемого компанией Technip, к существующим технологическим коммуникациям завода этилена ПАО «Казаньоргсинтез» и строительство вспомогательных объектов для обеспечения соответствия параметров, качественных и расходных показателей технологических потоков, необходимых для работы печного блока. Строительство новой 4-х камерной печи пиролиза и вспомогательных объектов предусматривается для обеспечения резервирования существующих печей пиролиза.
В состав проекта входит разработка узла нагрева и подготовки сырья и топливного газа, узла редуцирования пара, узла дозирования диметилдисульфида (ДМДС) – ингибитора коксообразования, система подготовки и насосная питательной воды, узел продувочных вод.
Полиэтилен. ПНД ПВД. Производство, сырье, особенности материала
Полиэтилен. ПНД ПВД. Производство, сырье, особенности материала из которого сделаны привычные бахилы, фартуки и нарукавники от компании Виргата.
Сырье
Полиэтилен – это твердый полимер белого цвета. Относится к классу органических соединений.
Основные виды
На сегодняшний день полимер выпускается двух основных марок ПВД и ПНП. Материал, изготовленный при среднем давлении относительного новое изобретение, но в перспективе количество выпускаемого продукта будет неизменно расти в связи с улучшающимися характеристиками и широким полем для применения.
Для коммерческого использования производят следующие виды материала (классы):
Низкой плотности или другое название – высокого давления (ПЭВД, ПВД).
Высокой плотности, или низкого давления (ПЭНП, ПНП).
Полиэтилен высокого давления
Производством полиэтилена занимается химическая промышленность. Газ этилен — основной элемент (из чего делают полиэтилен), но не единственный, требующийся для получения материала. Получение полиэтилена высокого давления происходит в автоклавах, трубчатых реакторах. Марок ПВД изготовленных в автоклаве, согласно ГОСТу, существует восемь. Из трубчатого реактора получают двадцать один тип полиэтилена высокого давления. Для синтеза ПВП требуется соблюдение следующих условий: Температурный режим – от 200 до 250°С. Катализатор – чистый кислород, пероксид (органический). Давление от 150 до 300 МПа. Поимеризированная масса в первой фазе имеет жидкое состояние, после чего перемещается в сепаратор, далее в гранулятор, где происходит формовка гранул готового материала. Качества ПЭВД используются для производства упаковочных пленок, термопленок, многослойной упаковки. Также полиэтилен высокого давления применяется в автомобильной, химической, пищевой промышленности.
Полиэтилен низкого давления
Производство ПНП имеет три способа. Большинство предприятий использует метод «суспензионной полимеризации». Процесс получения ПНП происходит с участием суспензии и постоянном перемешивании исходного сырья, для запуска процесса требуется катализатор. Вторым по распространенности способом производства является полимеризация в растворе под воздействием температуры и участии катализатора. Метод не слишком эффективен, поскольку в процессе полимеризации катализатор вступает в реакцию, и конечный полимер теряет часть своих качеств. Последним из способов производства ПНП является газофазная полимеризация, она почти ушла в прошлое, но иногда встречается на отдельных предприятиях. Процесс происходит с помощью смешивания газовых фаз сырья под воздействием диффузии. Конечный полимер получается с неоднородной структурой и плотностью, что сказывается на качестве готового продукта.
Полиэтиленовая плёнка — тонкий слой материи, изготовленный из полиэтилена, который обладает такими свойствами, как эластичность, влагонепроницаемость, морозостойкость и гигиеничность. Полиэтиленовая плёнка абсолютно безопасна для здоровья человека: её можно использовать даже для производства детских товаров.
Производство полиэтилена: организация бизнеса, технологии, оборудование
Производство полиэтилена, наиболее востребованного полимера, основано на реакции полимеризации газа этилена. Это термопластичный полимер, класса органических полифенолов. Его популярность объясняется целым комплексом технологических свойств, позволяющих производить из него множество изделий бытового назначения и изделий для разных сфер промышленного производства. Немаловажным фактором востребованности данного материала является его низкая стоимость по сравнению с аналогами, использующимися в этих же сферах.
Краткий анализ бизнеса:
Затраты на организацию бизнеса:150 – 250 тысяч долларов
Актуально для городов с населением:без ограничений
Ситуация в отрасли:низкая конкуренция
Сложность организации бизнеса:4/5
Окупаемость:12 – 14 месяцев
Основные виды полиэтилена
- ПНД – полиэтилен низкого давления, или ПВП – высокой плотности;
- ПВД – высокого давления, или ПНП – низкой плотности;
- ПСД – среднего давления, или ПСП – средней плотности.
Кроме этих видов полимеров, есть и другие: сшитый – PEX, вспененный и хлорсульфированный (ХСП) полиэтилены.
Сферы применения полиэтилена
Полиэтилен – один из самых широко применяемых современных материалов в производстве:
- упаковочных, термоусадочных, сельскохозяйственных и других видов пленки;
- водопроводных, газовых и других видов труб;
- различных синтетических волокон;
- емкостей для разного рода жидкостей;
- большого ассортимента стройматериалов;
- санитарно-технических изделий;
- посуды и предметов домашнего обихода;
- изоляционных материалов для электрических кабелей;
- деталей для автомобилей, станков, различного оборудования, инструментов и другой техники;
- протезов для стоматологии и других видов эндопротезирования;
- пенополиэтилена.
Широкий спектр потребительских свойств полиэтилена обусловлен целым комплексом химических, физико-механических и диэлектрических характеристик этого материала. Поэтому он востребован в радиоэлектротехнической, кабельной, химической, строительной, медицинской и многих других отраслях.
Специальные разновидности этого материала, такие как вспененный полиэтилен, сшитый, сверхмолекулярный, хлорсульфированный – эффективно используются в производстве строительных материалов. Хотя сам полиэтилен не конструкционный по структуре, но армирование стекловолокном дает возможность использовать его в конструкционных композитных изделиях.
Полиэтилен используется и как вторсырье. Его отходы отлично перерабатываются для дальнейшего применения.
к оглавлению ↑
Технология производства полиэтилена
Полиэтиленовый полимер получают в результате химической реакции полимеризации этилена в различно созданных условиях и в присутствии определенных катализаторов. В зависимости от условий протекания реакции – температуры, давления и катализаторов, полиэтилен приобретает кардинально отличающиеся характеристики.
Чаще всего практическую ценность имеют три вида полиэтилена – низкого, среднего и высокого давления. Поэтому стоит рассмотреть технологию получения именно этих материалов. Надо заметить, что полиэтилен среднего давления считается всего лишь разновидностью ПНД и технология их производства ничем не отличается.
к оглавлению ↑
Производство полиэтилена низкого давления
ПНД производится из очищенного газа этилена. Процесс идет при температуре 100-150°C при давлении до 4 МПа. В реакции полимеризации обязательно должен присутствовать катализатор: или триэтилаллюминий или четыреххлористый титан. Процесс может быть непрерывным или кратковременным, с перерывами.
Существует ряд технологий производства полиэтилена, отличающихся по типу используемых конструкций, размеру реактора, способу очистки полимера от катализатора. Весь технологический процесс разбит на три этапа:
- полимеризация полиэтилена;
- очистка его от катализатора;
- просушка.
Советуем прочитать:
Необходимое условие для нормального протекания реакции полимеризации – постоянная температура, которая поддерживается с помощью подаваемого этилена и его объемов. Процесс полимеризации с участием катализатора имеет свои недостатки – происходит неизбежное загрязнение полученного продукта остатками катализатора.
Он не только окрашивает полиэтилен в неприемлемый коричневый цвет, но и ухудшает его химические свойства. Для устранения этого недостатка катализатор разрушается, а потом растворяется и отфильтровывается. Отмывается полученный полимер в специальной центрифуге, в которую добавляют метиловый спирт.
После промывки он отжимается, к нему добавляют вещества, повышающие его прочность и внешний вид. Для улучшения внешних качеств добавляют воск, который придает полиэтилену блеск. Далее продукт полимеризации попадает в сушильные аппараты и в цеха грануляции. Основные марки полиэтилена производятся в порошкообразном виде, композиционные марки – в виде гранул. к оглавлению ↑
Производство полиэтилена высокого давления
ПВД производится при температуре не менее 200 °C, при давлении от 150 до 300 МПа, в качестве активатора реакции выступает кислород. Оборудование для получения полимера – автоклавные и трубчатые реакторы.
Трубчатый реактор – это длинный резервуар в виде трубы, в котором и происходит реакция полимеризации под высоким давлением. Полимер, в виде расплава выводится из реактора и поступает в отделитель промежуточного давления, где он изолируется от непрореагировавшего этилена. Затем, согласно технологической схеме он поступает на экструдер и выходит из него в виде гранул, и направляется на дополнительную обработку. Эта технология является наиболее востребованной среди производителей.
Автоклавные реакторы – цилиндрические, вертикально расположенные агрегаты, в которых идет реакция полимеризации этилена с инициатором реакции. Реакторы отличаются условиями протекания реакций, в том числе условиями теплоотвода. Концентрации инициаторов и параметров реакционной массы.
Различия протекания химических реакций. Разные виды оборудования и другие различия обусловливают структурные особенности получаемого продукта полимеризации.
Советуем прочитать:
Несмотря на тип реактора, схема производства ПВД для них одинаковая:
- подача в приемник реактора сырья и инициатора;
- разогрев ингредиентов и повышение параметров давления;
- промежуточная подача сырья и инициатора;
- изоляция непрореагировавшего этилена и его сбор для повторного использования;
- охлаждение полученного полимера, сброс давления;
- грануляция конечного продукта, промывка, сушка, упаковка.
Производство вспененного полиэтилена
Вспененный полиэтилен, или ППЭ – это полимер, отличающийся пористой структурой и имеющий высокие эксплуатационные и технические характеристики. Он широко используется как термоизоляционный материал в строительстве и в приборостроительном машиностроении, а также как упаковочный материал и в других сферах.
Технология производства этого полимера отличается определенной сложностью. Для ее полного цикла необходимо специальное оборудование: смесители, загрузчики, охлаждающие устройства, насосы высокого давления. Но самым главным оборудованием в производстве вспененного полиэтилена являются экструдеры. В качестве сырья используется ПВД, в качестве вспенивающих агентов – фреоны и алкановые смеси, например, бутан.
В зависимости от особенностей технологии производства, различают два вида ППЭ – сшитый и несшитый. Процесс вспенивания идет под определенным давлением и с высокой температурой. Этапы технологического процесса:
- загрузка смеси;
- смешивание;
- продавливание смеси через экструдер;
- сшивание пленок;
- вспенивание;
- получение заготовок в виде плит, пленки и других полуфабрикатов.
Производство вторичного полиэтилена
Для того, чтобы избежать затрат на крупномасштабное производство полимеров, можно воспользоваться их вторичной переработкой. Из вторсырья производится высококачественный гранулированный полимерный продукт, который по своим характеристикам ничем не уступающий первично полученному полимерному продукту.
Сырье подвергается дроблению. Затем, оно моется и сушится в центрифуге. Очищенная сырьевая масса проходит операцию агломерации и идет на гранулирование. Это – конечный продукт вторичной переработки полиэтилена. к оглавлению ↑
Оборудование для производства полиэтилена
Оборудование для производства полиэтилена различается в соответствии с назначением и видом перерабатываемого сырья. Технологическая цепочка представлена следующим оборудованием:
- один или несколько экструдеров-грануляторов;
- машина для резки;
- загрузчики, работающие на основе вакуума;
- насосы, оснащенные фильтрами для расплавов;
- вибросита;
- ванны для охлаждения;
- транспортеры;
- бункера для подачи сырьевой массы;
- мельницы.
Покупка нового основного оборудования для производства полиэтилена может стать в пределах 120-200 тысяч долларов.Новое отечественное оборудование будет стоить меньше в два раза. к оглавлению ↑
Как организовать завод по производству полиэтилена
Всякий производственный бизнес начинается с разработки бизнес-плана.
Составление бизнес-плана
Цель бизнес-плана – предоставление общей информации об авторе проекта, описание продукции, которую он собирается производить. Также должна быть раскрыты задачи проекта, в подробностях должна быть описана технология производства продукции.
Если эта технология является новой, то в бизнес-плане должны быть представлены заключения соответствующих органов об ее безопасности для окружающей среды и здоровья людей. к оглавлению ↑
Помещение
Промышленное производство, каковым является выпуск полиэтилена, следует размещать в производственной зоне населенного пункта. Для производственного помещения существуют определенные санитарные и технические требования. Площадь помещения не должна быть меньше 100 кв. метров, высота его не должна быть ниже 10 метров. В производственных цехах должна быть противопожарная защита и хорошая вентиляция.
к оглавлению ↑
Персонал
Обеспечить производственный процесс может небольшой по численности коллектив:
- руководитель предприятия;
- бухгалтер;
- менеджер по продажам;
- технолог;
- рабочие по обслуживанию технологической линии – 4 человека.
Возможны и другие варианты штатного расписания.
к оглавлению ↑
Оформление документов
Прежде всего, необходимо зарегистрировать свое предприятие. Это может быть ИП или ООО. Также необходимо получить разрешительные документы в таких инстанциях:
- городская администрация;
- пожарная, экологическая и санитарно-эпидемиологическая службы;
- электронадзор.
Расчет затрат
Сначала производится расчет доходов от производства продукции:
- сколько затрачивается в среднем на производство определенного объема продукции;
- какова ее рыночная стоимость;
- каков размер дохода.
Затем надо посчитать все расходы:
- стоимость разрешительных документов;
- подготовка помещения;
- закупка оборудования;
- закупка сырья.
Ежемесячные расходы:
- оплата труда работникам;
- оплата аренды помещения;
- налоги и коммунальные услуги.
Далее выполняются расчеты окупаемости бизнеса и его прибыльности. к оглавлению ↑
Рентабельность бизнеса
При стабильной работе предприятия и при хорошем стартовом капитале на приобретение оборудования, этот бизнес окупается через 12-14 месяцев. Через год стабильной работы, затраты на оборудование могут полностью окупиться и завод станет приносить чистую прибыль.
Полиэтилен (PE) — АГВУ
Способ и объем использования материала
- Полиэтилен (ПЭ) является наиболее широко производимым и используемым пластиком, на который приходится более 30 процентов от общего мирового производства пластмасс. Полиэтилен является термопластом и относится к группе стандартных материалов. Различают полиэтилен высокой плотности (HDPE) и полиэтилен низкой плотности (называемый LDPE). HDPE тверже и жестче, чем LDPE, может выдерживать более высокие температуры, менее проницаем для газов и более устойчив к химическим веществам.LDPE более жесткий, растяжимый и гибкий, чем HDPE. Более 50 процентов всей пластиковой упаковки изготовлено из полиэтилена, преобладающая доля (2012 г .: 32 процента всей пластиковой упаковки) — из полиэтилена низкой плотности и линейного полиэтилена низкой плотности.
Использование материалов во время производства
- Исходным продуктом полиэтилена является сырая нефть или природный газ. Однако, как и другое химическое сырье, этилен также можно производить из неископаемых источников углерода растительного происхождения. В Бразилии распространен полиэтилен на основе сахарного тростника (GreenPE), который по своему химическому составу и технологическим свойствам не отличается от обычного полиэтилена.
Сбор / сортировка / переработка
- Национальная двойная система в Германии собирает полиэтилен у домашних хозяйств, который затем используется для упаковки для розничной продажи.
- Использование технологии ближнего инфракрасного диапазона позволяет разделять отдельные типы синтетических материалов на сортировочных установках. Сегодня достигается точность сортировки до 98 процентов.
- PE подлежит 100% вторичной переработке. С помощью различных процессов, связанных с материалами, упаковка из использованного синтетического материала может быть либо переплавлена непосредственно в новые продукты, либо переработана в регранулят.Этот зернистый переработанный синтетический материал представляет собой экономичную альтернативу новому материалу и высококачественному сырью для промышленности по переработке синтетических материалов.
- Ассортимент продукции для вторичного полиэтилена разнообразен: пленки, мешки для мусора, канистры и бочки, мусорные баки, трубы для питьевой воды, вкладыши для мусорных свалок, изоляция кабелей.
Разработка / Предпосылки / Outlook
- В 2012 году доля полиэтилена во всей переработке синтетических материалов в Европе составляла примерно 28 процентов.Важным преимуществом ПЭ является относительно простой способ обработки. Упаковка может быть легко интегрирована в производственный процесс и отформована на месте, наполнена и запечатана.
- Кроме того, низкий вес упаковки приводит к низким транспортным расходам по отношению к наполнителю.
- Если возможно вспомнить определенные типы упаковки из полиэтилена высокой плотности из областей их применения (например, бутылки для молока) как «моноэнергетику», они могут использоваться в процессе переработки для продуктов, подходящих для производства упаковки для пищевых продуктов, аналогично ПЭТ.Две компании в Соединенном Королевстве уже используют процесс производства бутылок для молока из полиэтилена высокой плотности такого типа. Планируются и другие объекты.
Поли (этен) (полиэтилен)
Ежегодно производится более 80 миллионов тонн полиэтилена, часто известного как полиэтилен и полиэтилен, что делает его самым важным пластиком в мире. Это составляет более 60% этилена, производимого каждый год.
Поли (этен) выпускается в трех основных формах: низкой плотности (LDPE) (<0.930 г / см -3 ) и линейной низкой плотности (LLDPE) ( около 0,915-0,940 г / см -3 ) и высокой плотности (HDPE) ( около 0,940-0,965 г / см -3 ).
Форма LDPE или LLDPE предпочтительна для пленочной упаковки и для электроизоляции. Из полиэтилена высокой плотности изготавливают контейнеры для бытовой химии, такие как жидкости для мытья посуды, и бочки для промышленной упаковки. Он также экструдируется как трубопровод.
Рисунок 1 Использование поли (этена).
Все формы могут использоваться для литьевых изделий, таких как ведра, ящики для пищевых продуктов и миски для мытья посуды (Таблица 1).
Таблица 1 Примеры использования поли (этена).