Сырье для производства полиэтилена: Из чего делают полиэтилен? Производство полиэтилена

Содержание

Из чего делают полиэтилен? Производство полиэтилена

Из чего делают полиэтилен? Производство полиэтилена

Создано: 02.02.2018 17:17

История знает множество случаев, когда востребованные в той или иной отрасли материалы были получены в качестве побочного продукта при проведении научных опытов.

Ярким тому примером могут послужить анилиновые красители, которые совершили настоящий переворот в легкой промышленности. Аналогичная история случилась и с полиэтиленом.

История открытия

Впервые материал был случайно получен в 1899 году химиком Гансом фон Пехманном вследствие разогрева диамезотана. Химик обратил внимание на плотный и напоминающий воск материал, осевший на дно пробирки, однако эта случайность оказалось позабытой, и лишь через три десятилетия побочный продукт был вновь получен М. Перрином и Дж. Паттоном. В 1936 году был получен патент на низкоплотный полиэтилен, а уже через пару лет стартовало массовое производство.

Особенности

Полученный материал представляет собой белоцветный и твердый полимер, относящийся к органическим соединениям. Ключевым сырьем для получения полиэтилена служит этилен, от которого и пошло название. Данный газ полимеризуется при низком и высоком давлении, в результате чего получаются сырьевые гранулы для дальнейшей эксплуатации. В некоторых случа ях материал производится в порошковом виде.

Существует множество разновидностей данного материала, каждая из которых обладает своими особенностями и сферой применения. Полиэтилен может отличаться по степени давления в процессе производства, плотности и многим другим аспектам. В гранулированные вариации в процессе производства могут добавляться разнообразные красители, позволяющие получить тот или иной цвет.

Свойства

Материал устойчив к влаге, к множеству растворителей, органическим и неорганическим кислотам, а также не реагирует на соль. В процессе горения выделяется парафиновый запах, присутствует голубоватое свечение и слабый огонь. Материал разлагается при контакте с азотной кислотой, фтором и хлором. В процессе старения полиэтилена происходит образование поперечных связей между молекулярными цепями, из-за чего он становится хрупким.

Производство линейного полиэтилена

Метод производства варьируется в зависимости от типа материала. В случае линейной вариации полиэтилена температура нагрева должна достигать отметки 120 °С, давление в пределах 4 Мпа, а катализатором выступает смесь металлоорганического соединения с хлоридом титана. Процесс производства включает в себя выпадение материала в виде хлопьев, которые затем отделяют от раствора с дальнейшим процессом грануляции.

Производство полиэтилена низкого давления

ПНП может производиться тремя способа. В основном применяется суспензионная полимеризация, требующая постоянного перемешивания сырья и катализатора для запуска процесса. Второй способ — это полимеризация в растворе с определенной температурой и катализатором, которому свойственно вступать в реакцию, а потому метод не слишком эффективен. Последний из способов представляет собой газофазную полимеризацию, которая представляет собой процесс смешивания сырьевых газовых фаз под воздействием диффузии.

Производство полиэтилена высокого давления

Такая разновидность может быть получена при температурном режиме в диапазоне от 200 до 250°С. В качестве катализатора может применяться органический пероксид. Давление должно быть в диапазоне 150-300 МПа. В первой фазе масса находится в жидком состоянии, после чего отправляется к сепаратору, а затем к гранулятору.

Сырье для производства полиэтилена — Справочник химика 21

    Пиролиз нефтяного и газового сырья относится к термическим процессам. Целевое назначение его — получение газообразных олефинов, в первую очередь этилена, а также пропилена, бутадиена и бутиленов, являющихся сырьем для производства полиэтилена и полипропилена, этилового спирта, синтетического каучука и ряда других продуктов. Наряду с газом при пиролизе образуется смола, выход которой тем больше, чем тяжелее сырье пироли- 
[c.86]

    Пиролиз. Установки пиролиза бензиновых фракций на заводах ведущих нефтяных держав используют для получения этилена-сырья для производства полиэтилена. На российских заводах планируется проведение реконструкции установок с целью увеличения производительности и использования на них в качестве сырья более тяжелых фракций. [c.260]

    В свою очередь, этилен и пропилен служат исходным сырьем для производства полиэтилена, хлорвинила, полипропилена. Эти продукты производятся путем реакции полимеризации. [c.47]

    В 20-е годы прошлого века важное значение в качестве сырья для органического синтеза приобрели продукты переработки нефти. В частности, этилен оказался ценным сырьем для производства полиэтилена, поливинилхлорида, этилового спирта, ацетальдегида, уксусной кислоты. 

[c.30]

    Сырьем для производства полиэтилена является этилен [c.7]

    Основным сырьем для производства полиэтилена и полипропилена являются этилен и пропилен. В зависимости от метода производства полиэтилена, исходная этиленовая фракция должна быть различной концентрации и с различным допустимым качественным и количественным составом примесей. [c.23]

    Исходное сырье. Исходным сырьем для производства полиэтилена является этилен. Этилен получают в основном из газов, образующихся при крекинге и пиролизе нефти, а также термическим разложением этана, пропана и бутана (при 800 °С). Например [c.92]

    Что является основным сырьем для производства полиэтилена низкой плотности и источники его получения  [c.63]

    Сырьем для производства полиэтилена является этилен, выделяемый из газовых смесей, получаемых при пиролизе и крекинге нефтепродуктов, попутных и природных газов. 

[c.500]

    Сырье для производства полиэтилена [c.14]

    Использование углеводородного сырья для производства полиэтилена и полипролилена, искусственных волокон, фенола, этилового спирта и ацетона, аммиака и карбамида, метанола и формальдегида открыло широкие возможности для комплексной химизации народного хозяйства, значительного повышения эффективности общественного производства. [c.9]

    На некоторых месторождениях, например Уренгойском, нестабильный конденсат подается на ГПЗ на расстояние 700 км. Для предотвращения образования газовых пробок за счет выделения метана и этана при снижении давления в продуктопроводе на УКПГ дополнительно устанавливается оборудование для деэтанизации конденсата. Поток (11) из теплообменника 2 подается в колонну (на схеме не показана), в которой из конденсата отделяются метан и этан в газообразном состоянии. Этот газ называется газ деэтанизации . На Уренгойском УКПГ предусматривается выделение чистого этана — сырья для производства полиэтилена. 

[c.17]


    Исходньм сырьем для производства полиэтилена служит газ этилен, получаемый главным образом при пиролизе и крекинге нефти. Полиэтилен представляет собой высокомолекулярный парарн.то есть высокомолекулярный продукт полимеризаоди этилена, микромолекулы которого имеют линейное строение с небольшим числом боковых ответвлений. Молекулярная масса полиэтилена в зависимости от метода и режима полимеризации колеблется от десятков тысяч до нескольких миллионов. Полиэтилен — кристаллический полимер. При температуре около 20 с степень кристалличности полимера достигает 50-905 в зависимости от метода получения полиэтилена. [c.64]

    На другом предприятии разделение пирогаза осуществляется конденсационпым методом. Основной продукцией установки являются этилен концентрацией 99,9%, служащий сырьем для производства полиэтилена высокого давления, и пропилен концентрацией 96%, побочной продукцией — остаточный газ, метан, этановая и пропановая фракции. Необходимое охлаждение достигается за 

[c.167]

    Сырьем для производства полиэтилена служит этилен, получаемый высокотемпературным пиролизом нефтяных фракций или высокотемпературным крекингом пропана и бутана при 800 °С в трубчатых печах. Для полимеризации применяют этилен высокой степени чистоты (99,99% С2Н4), так как присутствие примесей может привести к обрыву полимерной цепи и снижению массы моля полимера. Особенно опасны примеси в сырье, поступающем на полимеризацию по радикальному механизму. [c.357]

    Сырьем для производства полиэтилена слун ит этилен — С2Н4 — бесцветный газ, представляющий простейший непредельный углеводород класса олефинов. [c.30]

    Этиленовая и пропиленовая фракции, которые служат исходным сырьем для производства полиэтилена или полипропиле- 

[c.25]

    У нас теперь есть и своя первичная переработка нефти и конденсата. Это также дает значительные денежные поступления и создает возможности для инвестирования проектов. Но, подчеркиваю, без сторонних инвесторов нам все равно не обойтись. Особенно при строительстве собственной газовой электростанции, а также для производства серополимерного цемента и самой серы в гранулированном виде. Большие резервы у нас имеются не только для получения серы, но и для лучшего использования углеводородного сырья. Например, астраханский природный газ содержит этан, который является ценнейшим сырьем для производства полиэтилена. Впрочем, по нашим подсчетам, этот способ гораздо эффективнее (почти на четверть), чем получать этот продукт из так называемого прямогонного бензина. Цены полиэтилена на мировом рынке высоки, что сулит нам определенную выгоду. К тому же в нем нуждается и сама Россия (если в западных странах ка человека приходится 

[c.11]


Технология производства полиэтилена | ЮНИТРЕЙД

Полиэтилен – полимер, синтезируемый путем полимеризации этилена в различных условиях и при разных катализаторах. В зависимости от температуры, давления и присутствия разных катализаторов возможно получение материалов с принципиально различными свойствами.

Сырье для изготовления полиэтилена

  • Мономер – этилен. Представляет собой простейший олефин (или алкен), при комнатной температуре это бесцветный горючий газ, который легче воздуха.
  • Вещества, необходимые для прохождения реакции. Для полиэтилена высокого давления (ПВД) может применяться кислород или пероксид в качестве инициатора реакции полимеризации. Для полиэтилена низкого давления (ПНД) используют катализаторы Циглера – Натты.
  • Другие мономеры, которые могут участвовать в реакции при изготовлении сополимеров этилена с улучшенными свойствами. Например, бутен или гексен.
  • Присадки и вспомогательные вещества, которые модифицируют итоговые товарные свойства материала. К примеру, некоторые присадки увеличивают долговечность материала, некоторые – ускоряют процесс кристаллизации и т.п.

Технология производства полиэтилена

На практике встречается три вида полиэтилена: низкого, среднего и высокого давления. Принципиальная разница существует между материалом низкого и высокого давления, полиэтилен среднего давления можно считать разновидностью ПНД. Потому рассматривать стоит два кардинально различных процесса полимеризации:

  • Полиэтилен высокого давления (или низкой плотности) получают при температуре не менее 200 °C, при давлении от 150 до 300 МПа, в присутствии инициатора кислорода. В промышленных условиях применяют автоклавы и трубчатые реакторы. Полимеризация проходит в расплаве. Получаемое жидкое сырье гранулируют, на выходе получают небольшие белые гранулы.
  • Полиэтилен низкого давления (или высокой плотности) изготавливается при температуре 100 — 150 °C при давлении до 4 МПа. Обязательное условие прохождения реакции – присутствие катализатора Циглера – Натты, в промышленных условиях чаще всего применяется смесь хлорида титана и триэтилалюминий или другие алкилпроизводные вещества. Чаще всего полимеризация проходит в растворе гексана. После прохождения полимеризации вещество проходит грануляцию в вакуумных условиях, приобретая товарную форму.

Технология производства линейного полиэтилена средней плотности и низкой плотности

Отдельно следует сказать о производстве линейного полиэтилена. Он отличается от обычного полимера тем, что имеет особую структуру: большое количество коротких молекулярных цепочек, дающих материалу особые свойства. Продукт сочетает эластичность, легкость и увеличенную прочность.

Процесс производства предполагает присутствие других мономеров для реакции сополимеризации, чаще всего – бутена или гексена, в редких случаях – октена. Наиболее эффективный способ производства – полимеризация в жидкой фазе, в реакторе с температурой около 100 °C. Для повышения плотности линейного полиэтилена применяют металлоценовые катализаторы.

Технология производства полиэтилена различных видов

Первый опыт полимеризации этилена в конце XIX века получил выходец из России – учёный Густавсон, проведя этот процесс с катализатором AlBr3. На протяжении долгих лет полиэтилен производился в небольших объемах, но в 1938 году процесс промышленного производства освоили англичане. В то время метод полимеризации был ещё не совершенен.

1952 год совершил прорыв в процессе промышленного производства полиэтилена. Немецкий химик Циглер изобрёл эффективный вариант полимеризации этилена под действием металл-органических катализаторов. Впрочем, настоящая технология производства полиэтилена основана именно на данном методе.

Сырье

Исходным материалом для получения является этен – простейший представитель ряда алкенов. Простота данного способа производства сильно зависит от наличия этилового спирта, который используется как сырьё. Современные промышленные линии для получения полимера разрабатывают с учётом их работы на нефтяных и попутных газах – легкодоступных фракций нефти.

Такие газы выделяются при пиролизе или крекинге нефтепродуктов при очень высоких температурах и содержат в себе примеси h3, Ch5, C2H6 и другие газы. Попутный газ в свою очередь содержит такие компоненты как газы-парафины, поэтому при подвергании их термической обработке с высоким выходом получают этилен.

Технология производства полиэтилена высокого давления

Процесс получения ПЭ идёт по радикальному механизму. При проведении применяют разного рода инициаторы для снижения активационного порога молекулы. В качестве примера таковых можно привести перекись водорода, органические перекиси, О2, нитрилы. Радикальный механизм, в общем, не имеет отличий от обычной полимеризации:

  • 1 стадия – инициирование;
  • 2 стадия – увеличение цепи;
  • 3 стадия – обрыв цепи.

Цепь инициируется посредством выделения свободных радикалов при термической обработке их источника. Этен реагирует с выделившимся радикалом, наделяется определённой Еакт, увеличивая тем самым число молекул мономера вокруг себя. В дальнейшем наблюдается нарастание цепи.

Технология процесса

Существует два варианта процесса полимеризации – либо полиэтилен образуется в массе, либо в суспензии. Первый получил наибольшее распространение и представляет собой совокупность процессов.

Газ этилен, являющийся смесью, а не чистым веществом, вначале проходит путь фильтрации через тканевый фильтр, задерживающий механические примеси. Далее к очищенному этену подводят инициатор в баллоне, объём которого рассчитывается исходя из условий процесса. Поправка делается на наибольший выход полимера.

После, смесь транспортируют, фильтруют и подвергают сжатию в две стадии. На выходе из реактора получают практически чистый полиэтилен с примесью этилена, от которого избавляются дросселированием смеси в приёмнике под низким давлением.

Технология производства полиэтилена низкого давления

Источниками сырья для получения данного вида полиэтилена служат чистый, без примесей этилен и катализатор – триэтилат алюминия и тетрахлорид Ti. Заменой Al(C2H5)3 может послужить как хлорид диэтилалюминия, так и дихлорид этилата алюминия. Катализатор получается в 2 стадии.

Технология процесса

Для данного процесса получения ПЭ низкого давления характерна как периодичность, так и непрерывность. От выбора технологии зависит и схема процесса, каждая их которых различна по конструкции оборудования, объёму реакторов, методу очистки полиэтилена от примесей и др.

Самая распространённая схема получения полимера включает три непрерывных стадии: полимеризация сырья, очистка продукта от остатков катализатора и его высушивание. Аппараты для катализаторной подачи выделяют в мерники пятипроцентный раствор смешанного катализатора, после чего он поступает в бак, в котором смешивается с органическим растворителем до необходимой концентрации в 0.2%. Из бака готовая смесь катализатора отводится в реактор, где поддерживается при необходимом давлении.

Этилен подводится в реактор снизу, где впоследствии перемешиваясь с катализатором, образует рабочую смесь. Для производства полиэтилена при пониженном давлении характерно загрязнение продукта остатками катализаторной смеси, которые изменяют его окраску на коричневую. Очистка основного продукта производится нагреванием смеси, в результате чего происходит разрушение катализатора, дальнейшее отделение примесей и их прямая фильтрация от полиэтилена.

Увлажнённый продукт поступает на сушку в сушильные камеры бункера, где полностью очищается на кипящем слое азота (T = 373 K). Сухой порошок высыпается из бункера на пневмолинию, где отправляется на гранулирование. На эту же линию отправляется пыль с частицами полиэтилена, оставшаяся после очистки азота.

Производство полиэтилена

Полиэтилен занимает первое место в мировом производстве полимеров, синтезируемых методом полимеризации. Одним из методов производства является полимеризация этилена под высоким давлением. Этилен получают пиролизом предельных углеводородов в печах пиролиза с получением пирогаза.

Производством полиэтилена занимаются все крупные компании нефтехимической промышленности. Главным сырьем, из которого получают полиэтилен, является этилен. Производство осуществляется при низком, среднем и высоком давлениях. Как правило, он выпускается в гранулах, которые имеют диаметр от 2 до 5 миллиметров, иногда в виде порошка. На сегодняшний день известны четыре основных способа производства полиэтилена. В результате, получают:

  1. полиэтилен высокого давления (ПВД)
  2. полиэтилен низкого давления (ПНД)
  3. полиэтилен среднего давления (ПСД)
  4. линейный полиэтилен высокого давления (ЛПВД)

Полиэтилен высокого давления давления образуется при высоком давлении в результате полимеризации этилена, компримированного до высокого давления, в автоклаве или в трубчатом реакторе. Полимеризация в реакторе осуществляется по радикальному механизму под воздействием кислорода, органических пероксидов, ими являются лаурил, бензоил или их смесей. Этилен смешивают с инициатором, затем нагревают до 700°С и сжимают компрессором до 25 МПа. После этого он поступает в первую часть реактора, в которой его нагревают до 1 800°С, а потом во вторую часть реактора для осуществления полимеризации, которая происходит при температуре в пределах от 190 до 300°С и давлении от 130 до 250 МПа. Всего этилен находится в реакторе не более 100 секунд. Степень его превращения составляет 25%. Она зависит от типа и количества инициатора. Из полученного полиэтилена удаляется тот этилен, который не прореагировал, после чего продукт охлаждают и упаковывают. ПВД производят в виде как неокрашенных, так и окрашенных гранул.

Производство полиэтилена низкого давления осуществляется по трем основным технологиям:

  • Полимеризация, происходящая в суспензии
  • Полимеризация, происходящая в растворе. Таким раствором служит гексан
  • Газофазная полимеризация

Наиболее распространенным способом считается полимеризация в растворе. Полимеризация в растворе осуществляется в температурном промежутке от 160 до 2 500°С и давлении от 3,4 до 5,3 МПа. Контакт с катализатором осуществляется примерно на протяжении 10-15 минут. Выделение полиэтилена из раствора производится удалением растворителя сначала в испарителе, а после этого в сепараторе и в вакуумной камере гранулятора. Гранулированный полиэтилен пропаривается водяным паром. ПНД производится в виде как неокрашенных, так и окрашенных гранул, а иногда и в порошке.

Производство полиэтилена среднего давления осуществляется в результате полимеризации этилена в растворе. Полиэтилен среднего давления получается при температуре примерно 150°С, под давлением не более 4 МПа, в присутствии катализатора. ПСД из раствора выпадает в виде хлопьев. Продукт, полученный вышеописанным образом, отличается средневесовым молекулярным весом не более 400 тысяч, степенью кристалличности не более 90%.

Производство линейного полиэтилена высокого давления осуществляется при помощи химической модификации ПВД. Процесс происходит при температуре 150°С и примерно 3,0-4,0 МПа. Линейный полиэтилен низкой плотности по своей структуре напоминает полиэтилен высокой плотности, однако он отличается более длинными и многочисленными боковыми ответвлениями. Производство линейного полиэтилена выполняется двумя способами:

  • Газофазная полимеризация
  • Полимеризация в жидкой фазе – наиболее популярный в настоящее время способ. Она осуществляется в реакторе со сжиженным слоем. В реактор непрерывно подается этилен и отводится полимер с сохранением в реакторе постоянного уровня сжиженного слоя. Процесс происходит при температуре около 100°С, давлении от 0,689 до 2,068 МПа

Эффективность данного способа полимеризации в жидкой фазе ниже, чем у газофазного, однако для него характерны и свои плюсы, а именно: размер установки намного меньше, чем у оборудования для газофазной полимеризации, и гораздо ниже капиталовложения.

Практически аналогичным является способ в реакторе с устройством для перемешивания с применением циглеровских катализаторов. При этом образуется максимальный выход продукта. Не так давно для производства линейного полиэтилена стали использовать технологию, в результате которой применяются металлоценовые катализаторы. Такая технология дает возможность получить более высокую молекулярную массу полимера, благодаря чему возрастает прочность изделия. ПВД, ПНД, ПСД и ЛПВД отличаются друг от друга, как по своей структуре, так и по свойствам, соответственно, и используются они для решения различных задач. Кроме вышеперечисленных способов полимеризации этилена имеются и иные, только в промышленности они распространения не получили.

На сегодняшний день полимер выпускается двух основных марок ПВД и ПНД.

Существуют и другие виды полиэтилена, каждый из которых имеет свои свойства и сферу применения. В гранулированный полимер в процессе производства добавляются различные красители, позволяющие получить черный полиэтилен, красный или любого другого цвета.

Получение полиэтилена высокого давления происходит в автоклавах, трубчатых реакторах. Марок ПВД изготовленных в автоклаве, согласно ГОСТу, существует восемь. Из трубчатого реактора получают двадцать один тип полиэтилена высокого давления.

Для синтеза ПНД требуется соблюдение следующих условий:

  1. температурный режим – от 200 до 250°С
  2. катализатор – чистый кислород, пероксид (органический)
  3. давление от 150 до 300 МПа

Полимеризированная масса в первой фазе имеет жидкое состояние, после чего перемещается в сепаратор, далее в гранулятор, где происходит формовка гранул готового материала. Качества ПЭВД используются для производства упаковочных пленок, термопленок, многослойной упаковки. Также полиэтилен высокого давления применяется в автомобильной, химической, пищевой промышленностях. Из него делают качественные прочные трубы, используемые в жилом секторе.


Блок-схема

Важнейшими задачами предприятий по производству полиэтилена являются модернизация оборудования, совершенствование технологии пиролиза, конверсии, повышение мощности производства. В этом направлении «ЛЕННИИХИММАШ» выполняет следующие виды работ:

  • разработка оборудования для оснащения печей пиролиза при их модернизации
  • обследование существующего состояния предприятия
  • анализ, технико-экономическое обоснование и выбор оптимального варианта реконструкции
  • модернизация оборудования
  • проектирование зданий и сооружений

Основное оборудование производства полиэтилена:

  • реакторный блок
  • компрессоры
  • блоки рецикла высокого и среднего давления (отделитель, сепаратор, теплообменник)
  • станция горячей воды с насосами
  • холодильная установка
  • насосы
  • емкости, в т.ч. с перемешивающим устройством

Предварительное обследование существующего состояния оборудования


Холодильники рецикла высокого давления


Трубчатый реактор

     
Отделитель низкого давления V=12 м3 Узел конфекционирования

Опыт «ЛЕННИИХИММАШ»

В период активного строительства в СССР заводов по производству из пирогаза этилена и пропилена для последующей выработки полимерных материалов ЛЕННИИХИММАШ являлся основным разработчиком и поставщиком колонного и теплообменного оборудования низкотемпературных блоков для установок различной мощности от 45 до 300 тыс.т этилена в год (Э-45, ЭП-60, Э-100, Э-200, ЭП-300). В последующие годы для действующих производств выполнялись работы по их реконструкции с целью повышения производительности по перерабатываемому пирогазу, реализованы технические решения по стабилизации работы установок, снижению потерь целевых продуктов (повышение коэффициента извлечения), повышению качества продукции. При этом проводилось оснащение установок дополнительной аппаратурой, замена контактных устройств колонн, оптимизация технологической схемы. В низкотемпературных блоках этиленовых производств при разработке колонной аппаратуры использованы результаты проведенных ЛЕННИИХИММАШ научно-исследовательских работ, разработанные методики гидравлического расчета тарелок, результаты обследования блоков разработанного оборудования на этиленовых производствах. Для производства полиэтилена высокого давления для Новополоцкого, Сумгаитского, Томского комбинатов и производства в Германии ЛЕННИИХИММАШ было разработано специальное оборудование: поршневые этиленовые компрессора (бустер-компрессор, компрессора этилена высокого давления на оппозитной базе (I каскада – до давления 25 МПа и II каскада – до 230 МПа), реакторное оборудование, емкости. Это оборудование продолжает успешно эксплуатироваться и в настоящее время.

В состав действующего производства входят:

  • Установка производства ПЭВД с трубчатым реактором производительностью 50 тыс. т/год (процесс фирмы АТО — Франция)
  • Установка получения ПЭВД с автоклавным реактором (две технологические линии мощностью по15 тыс. т/год каждая, общей производительностью – 30 тыс. т/год) процесс фирмы ICI- Англия

Специалистами ЛЕННИИХИММАШ было проведено обследование, в процессе которого выявлены следующие резервы по основному и вспомогательному оборудованию:

По установке с трубчатым реактором резерв имеются резервы по производительности, что делает целесообразным не заменять установку в полном объеме. Возможна частичная модернизация с увеличением мощности основных технологических блоков:

  • реакторный блок без демонтажа реактора
  • блок компрессии с частичной заменой оборудования без изменения строительной части
  • блок рецикла низкого давления сохранится без крупных изменений
  • блок рецикла высокого давления требует значительной реконструкции

Предложено проектирование новой холодильной установки, которая значительно увеличит производительность, составлен перечень нового и модернизируемого оборудования блоков с основными техническими характеристиками.


Вариант реконструкция трубчатого реактора – переход на трехзонный
реактор во 2 и 3 вариантах реконструкции с введением жидкостного
инициирования


Схема работы холодильной установки

Модернизация компрессоров — Мульти компрессор бустер/первый каскад
фирмы Burckhardt

Предложено три варианта реконструкции. В зависимости от объема реконструкции суммарная производительность двух производств может быть повышена с 80 тыс.т ПЭ в год до:

  • Вариант 1 – 90 тыс. т/год
  • Вариант 2 – 130 тыс.т/год
  • Вариант 3 – 128 тыс.т/год

В 2016 году в связи с реконструкцией цеха пиролиза и очистки газа завода этилена ПАО «Казаньоргсинтез» разработаны основные технические решения, а в 2017 году ведется техническое проектирование наружной установки « Четырехкамерная печь пиролиза этана П-810/815/820/825», в составе узла пиролиза этановой и пропановой фракции в трубчатых печах. Целью работы является привязка 4-х камерной печи, проектируемого и поставляемого компанией Technip, к существующим технологическим коммуникациям завода этилена ПАО «Казаньоргсинтез» и строительство вспомогательных объектов для обеспечения соответствия параметров, качественных и расходных показателей технологических потоков, необходимых для работы печного блока. Строительство новой 4-х камерной печи пиролиза и вспомогательных объектов предусматривается для обеспечения резервирования существующих печей пиролиза.

В состав проекта входит разработка узла нагрева и подготовки сырья и топливного газа, узла редуцирования пара, узла дозирования диметилдисульфида (ДМДС) – ингибитора коксообразования, система подготовки и насосная питательной воды, узел продувочных вод.

Полиэтилен. ПНД ПВД. Производство, сырье, особенности материала

Полиэтилен. ПНД ПВД. Производство, сырье, особенности материала из которого сделаны привычные бахилы, фартуки и нарукавники от компании Виргата.

Сырье

Полиэтилен – это твердый полимер белого цвета. Относится к классу органических соединений.

Основные виды

На сегодняшний день полимер выпускается двух основных марок ПВД и ПНП. Материал, изготовленный при среднем давлении относительного новое изобретение, но в перспективе количество выпускаемого продукта будет неизменно расти в связи с улучшающимися характеристиками и широким полем для применения.

Для коммерческого использования производят следующие виды материала (классы):

Низкой плотности или другое название – высокого давления (ПЭВД, ПВД).

Высокой плотности, или низкого давления (ПЭНП, ПНП).

Полиэтилен высокого давления

Производством полиэтилена занимается химическая промышленность. Газ этилен — основной элемент (из чего делают полиэтилен), но не единственный, требующийся для получения материала. Получение полиэтилена высокого давления происходит в автоклавах, трубчатых реакторах. Марок ПВД изготовленных в автоклаве, согласно ГОСТу, существует восемь. Из трубчатого реактора получают двадцать один тип полиэтилена высокого давления. Для синтеза ПВП требуется соблюдение следующих условий: Температурный режим – от 200 до 250°С. Катализатор – чистый кислород, пероксид (органический). Давление от 150 до 300 МПа. Поимеризированная масса в первой фазе имеет жидкое состояние, после чего перемещается в сепаратор, далее в гранулятор, где происходит формовка гранул готового материала. Качества ПЭВД используются для производства упаковочных пленок, термопленок, многослойной упаковки. Также полиэтилен высокого давления применяется в автомобильной, химической, пищевой промышленности.

Полиэтилен низкого давления

Производство ПНП имеет три способа. Большинство предприятий использует метод «суспензионной полимеризации». Процесс получения ПНП происходит с участием суспензии и постоянном перемешивании исходного сырья, для запуска процесса требуется катализатор. Вторым по распространенности способом производства является полимеризация в растворе под воздействием температуры и участии катализатора. Метод не слишком эффективен, поскольку в процессе полимеризации катализатор вступает в реакцию, и конечный полимер теряет часть своих качеств. Последним из способов производства ПНП является газофазная полимеризация, она почти ушла в прошлое, но иногда встречается на отдельных предприятиях. Процесс происходит с помощью смешивания газовых фаз сырья под воздействием диффузии. Конечный полимер получается с неоднородной структурой и плотностью, что сказывается на качестве готового продукта.

Полиэтиленовая плёнка — тонкий слой материи, изготовленный из полиэтилена, который обладает такими свойствами, как эластичность, влагонепроницаемость, морозостойкость и гигиеничность. Полиэтиленовая плёнка абсолютно безопасна для здоровья человека: её можно использовать даже для производства детских товаров.

Производство полиэтилена: организация бизнеса, технологии, оборудование

Производство полиэтилена, наиболее востребованного полимера, основано на реакции полимеризации газа этилена. Это термопластичный полимер, класса органических полифенолов. Его популярность объясняется целым комплексом технологических свойств, позволяющих производить из него множество изделий бытового назначения и изделий для разных сфер промышленного производства. Немаловажным фактором востребованности данного материала является его низкая стоимость по сравнению с аналогами, использующимися в этих же сферах.



Краткий анализ бизнеса:
Затраты на организацию бизнеса:150 – 250 тысяч долларов
Актуально для городов с населением:без ограничений
Ситуация в отрасли:низкая конкуренция
Сложность организации бизнеса:4/5
Окупаемость:12 – 14 месяцев

Основные виды полиэтилена

  • ПНД – полиэтилен низкого давления, или ПВП – высокой плотности;
  • ПВД – высокого давления, или ПНП – низкой плотности;
  • ПСД – среднего давления, или ПСП – средней плотности.

Кроме этих видов полимеров, есть и другие: сшитый – PEX, вспененный и хлорсульфированный (ХСП) полиэтилены.

Сферы применения полиэтилена

Полиэтилен – один из самых широко применяемых современных материалов в производстве:

  • упаковочных, термоусадочных, сельскохозяйственных и других видов пленки;
  • водопроводных, газовых и других видов труб;
  • различных синтетических волокон;
  • емкостей для разного рода жидкостей;
  • большого ассортимента стройматериалов;
  • санитарно-технических изделий;
  • посуды и предметов домашнего обихода;
  • изоляционных материалов для электрических кабелей;
  • деталей для автомобилей, станков, различного оборудования, инструментов и другой техники;
  • протезов для стоматологии и других видов эндопротезирования;
  • пенополиэтилена.

Широкий спектр потребительских свойств полиэтилена обусловлен целым комплексом химических, физико-механических и диэлектрических характеристик этого материала. Поэтому он востребован в радиоэлектротехнической, кабельной, химической, строительной, медицинской и многих других отраслях.

Специальные разновидности этого материала, такие как вспененный полиэтилен, сшитый, сверхмолекулярный, хлорсульфированный – эффективно используются в производстве строительных материалов. Хотя сам полиэтилен не конструкционный по структуре, но армирование стекловолокном дает возможность использовать его в конструкционных композитных изделиях.

Полиэтилен используется и как вторсырье. Его отходы отлично перерабатываются для дальнейшего применения.

к оглавлению ↑

Технология производства полиэтилена

Полиэтиленовый полимер получают в результате химической реакции полимеризации этилена в различно созданных условиях и в присутствии определенных катализаторов. В зависимости от условий протекания реакции – температуры, давления и катализаторов, полиэтилен приобретает кардинально отличающиеся характеристики.

Чаще всего практическую ценность имеют три вида полиэтилена – низкого, среднего и высокого давления. Поэтому стоит рассмотреть технологию получения именно этих материалов. Надо заметить, что полиэтилен среднего давления считается всего лишь разновидностью ПНД и технология их производства ничем не отличается.

к оглавлению ↑

Производство полиэтилена низкого давления

ПНД производится из очищенного газа этилена. Процесс идет при температуре 100-150°C при давлении до 4 МПа. В реакции полимеризации обязательно должен присутствовать катализатор: или триэтилаллюминий или четыреххлористый титан. Процесс может быть непрерывным или кратковременным, с перерывами.

Существует ряд технологий производства полиэтилена, отличающихся по типу используемых конструкций, размеру реактора, способу очистки полимера от катализатора. Весь технологический процесс разбит на три этапа:

  • полимеризация полиэтилена;
  • очистка его от катализатора;
  • просушка.

Советуем прочитать:

Необходимое условие для нормального протекания реакции полимеризации – постоянная температура, которая поддерживается с помощью подаваемого этилена и его объемов. Процесс полимеризации с участием катализатора имеет свои недостатки – происходит неизбежное загрязнение полученного продукта остатками катализатора.

Он не только окрашивает полиэтилен в неприемлемый коричневый цвет, но и ухудшает его химические свойства. Для устранения этого недостатка катализатор разрушается, а потом растворяется и отфильтровывается. Отмывается полученный полимер в специальной центрифуге, в которую добавляют метиловый спирт.

После промывки он отжимается, к нему добавляют вещества, повышающие его прочность и внешний вид. Для улучшения внешних качеств добавляют воск, который придает полиэтилену блеск. Далее продукт полимеризации попадает в сушильные аппараты и в цеха грануляции. Основные марки полиэтилена производятся в порошкообразном виде, композиционные марки – в виде гранул. к оглавлению ↑

Производство полиэтилена высокого давления

ПВД производится при температуре не менее 200 °C, при давлении от 150 до 300 МПа, в качестве активатора реакции выступает кислород. Оборудование для получения полимера – автоклавные и трубчатые реакторы.

Трубчатый реактор – это длинный резервуар в виде трубы, в котором и происходит реакция полимеризации под высоким давлением. Полимер, в виде расплава выводится из реактора и поступает в отделитель промежуточного давления, где он изолируется от непрореагировавшего этилена. Затем, согласно технологической схеме он поступает на экструдер и выходит из него в виде гранул, и направляется на дополнительную обработку. Эта технология является наиболее востребованной среди производителей.

Автоклавные реакторы – цилиндрические, вертикально расположенные агрегаты, в которых идет реакция полимеризации этилена с инициатором реакции. Реакторы отличаются условиями протекания реакций, в том числе условиями теплоотвода. Концентрации инициаторов и параметров реакционной массы.

Различия протекания химических реакций. Разные виды оборудования и другие различия обусловливают структурные особенности получаемого продукта полимеризации.

Советуем прочитать:

Несмотря на тип реактора, схема производства ПВД для них одинаковая:

  • подача в приемник реактора сырья и инициатора;
  • разогрев ингредиентов и повышение параметров давления;
  • промежуточная подача сырья и инициатора;
  • изоляция непрореагировавшего этилена и его сбор для повторного использования;
  • охлаждение полученного полимера, сброс давления;
  • грануляция конечного продукта, промывка, сушка, упаковка.
к оглавлению ↑

Производство вспененного полиэтилена

Вспененный полиэтилен, или ППЭ – это полимер, отличающийся пористой структурой и имеющий высокие эксплуатационные и технические характеристики. Он широко используется как термоизоляционный материал в строительстве и в приборостроительном машиностроении, а также как упаковочный материал и в других сферах.

Технология производства этого полимера отличается определенной сложностью. Для ее полного цикла необходимо специальное оборудование: смесители, загрузчики, охлаждающие устройства, насосы высокого давления. Но самым главным оборудованием в производстве вспененного полиэтилена являются экструдеры. В качестве сырья используется ПВД, в качестве вспенивающих агентов – фреоны и алкановые смеси, например, бутан.

В зависимости от особенностей технологии производства, различают два вида ППЭ – сшитый и несшитый. Процесс вспенивания идет под определенным давлением и с высокой температурой. Этапы технологического процесса:

  • загрузка смеси;
  • смешивание;
  • продавливание смеси через экструдер;
  • сшивание пленок;
  • вспенивание;
  • получение заготовок в виде плит, пленки и других полуфабрикатов.
к оглавлению ↑

Производство вторичного полиэтилена

Для того, чтобы избежать затрат на крупномасштабное производство полимеров, можно воспользоваться их вторичной переработкой. Из вторсырья производится высококачественный гранулированный полимерный продукт, который по своим характеристикам ничем не уступающий первично полученному полимерному продукту.

Сырье подвергается дроблению. Затем, оно моется и сушится в центрифуге. Очищенная сырьевая масса проходит операцию агломерации и идет на гранулирование. Это – конечный продукт вторичной переработки полиэтилена. к оглавлению ↑

Оборудование для производства полиэтилена

Оборудование для производства полиэтилена различается в соответствии с назначением и видом перерабатываемого сырья. Технологическая цепочка представлена следующим оборудованием:

  • один или несколько экструдеров-грануляторов;
  • машина для резки;
  • загрузчики, работающие на основе вакуума;
  • насосы, оснащенные фильтрами для расплавов;
  • вибросита;
  • ванны для охлаждения;
  • транспортеры;
  • бункера для подачи сырьевой массы;
  • мельницы.

Покупка нового основного оборудования для производства полиэтилена может стать в пределах 120-200 тысяч долларов.Новое отечественное оборудование будет стоить меньше в два раза. к оглавлению ↑

Как организовать завод по производству полиэтилена

Всякий производственный бизнес начинается с разработки бизнес-плана.

Составление бизнес-плана

Цель бизнес-плана – предоставление общей информации об авторе проекта, описание продукции, которую он собирается производить. Также должна быть раскрыты задачи проекта, в подробностях должна быть описана технология производства продукции.

Если эта технология является новой, то в бизнес-плане должны быть представлены заключения соответствующих органов об ее безопасности для окружающей среды и здоровья людей. к оглавлению ↑

Помещение

Промышленное производство, каковым является выпуск полиэтилена, следует размещать в производственной зоне населенного пункта. Для производственного помещения существуют определенные санитарные и технические требования. Площадь помещения не должна быть меньше 100 кв. метров, высота его не должна быть ниже 10 метров. В производственных цехах должна быть противопожарная защита и хорошая вентиляция.

к оглавлению ↑

Персонал

Обеспечить производственный процесс может небольшой по численности коллектив:

  • руководитель предприятия;
  • бухгалтер;
  • менеджер по продажам;
  • технолог;
  • рабочие по обслуживанию технологической линии – 4 человека.

Возможны и другие варианты штатного расписания.

к оглавлению ↑

Оформление документов

Прежде всего, необходимо зарегистрировать свое предприятие. Это может быть ИП или ООО. Также необходимо получить разрешительные документы в таких инстанциях:

  • городская администрация;
  • пожарная, экологическая и санитарно-эпидемиологическая службы;
  • электронадзор.

Расчет затрат

Сначала производится расчет доходов от производства продукции:

  • сколько затрачивается в среднем на производство определенного объема продукции;
  • какова ее рыночная стоимость;
  • каков размер дохода.

Затем надо посчитать все расходы:

  • стоимость разрешительных документов;
  • подготовка помещения;
  • закупка оборудования;
  • закупка сырья.

Ежемесячные расходы:

  • оплата труда работникам;
  • оплата аренды помещения;
  • налоги и коммунальные услуги.

Далее выполняются расчеты окупаемости бизнеса и его прибыльности. к оглавлению ↑

Рентабельность бизнеса

При стабильной работе предприятия и при хорошем стартовом капитале на приобретение оборудования, этот бизнес окупается через 12-14 месяцев. Через год стабильной работы, затраты на оборудование могут полностью окупиться и завод станет приносить чистую прибыль.

Полиэтилен (PE) — АГВУ

Способ и объем использования материала

  • Полиэтилен (ПЭ) является наиболее широко производимым и используемым пластиком, на который приходится более 30 процентов от общего мирового производства пластмасс. Полиэтилен является термопластом и относится к группе стандартных материалов. Различают полиэтилен высокой плотности (HDPE) и полиэтилен низкой плотности (называемый LDPE). HDPE тверже и жестче, чем LDPE, может выдерживать более высокие температуры, менее проницаем для газов и более устойчив к химическим веществам.LDPE более жесткий, растяжимый и гибкий, чем HDPE. Более 50 процентов всей пластиковой упаковки изготовлено из полиэтилена, преобладающая доля (2012 г .: 32 процента всей пластиковой упаковки) — из полиэтилена низкой плотности и линейного полиэтилена низкой плотности.

Использование материалов во время производства

  • Исходным продуктом полиэтилена является сырая нефть или природный газ. Однако, как и другое химическое сырье, этилен также можно производить из неископаемых источников углерода растительного происхождения. В Бразилии распространен полиэтилен на основе сахарного тростника (GreenPE), который по своему химическому составу и технологическим свойствам не отличается от обычного полиэтилена.

Сбор / сортировка / переработка

  • Национальная двойная система в Германии собирает полиэтилен у домашних хозяйств, который затем используется для упаковки для розничной продажи.
  • Использование технологии ближнего инфракрасного диапазона позволяет разделять отдельные типы синтетических материалов на сортировочных установках. Сегодня достигается точность сортировки до 98 процентов.
  • PE подлежит 100% вторичной переработке. С помощью различных процессов, связанных с материалами, упаковка из использованного синтетического материала может быть либо переплавлена ​​непосредственно в новые продукты, либо переработана в регранулят.Этот зернистый переработанный синтетический материал представляет собой экономичную альтернативу новому материалу и высококачественному сырью для промышленности по переработке синтетических материалов.
  • Ассортимент продукции для вторичного полиэтилена разнообразен: пленки, мешки для мусора, канистры и бочки, мусорные баки, трубы для питьевой воды, вкладыши для мусорных свалок, изоляция кабелей.

Разработка / Предпосылки / Outlook

  • В 2012 году доля полиэтилена во всей переработке синтетических материалов в Европе составляла примерно 28 процентов.Важным преимуществом ПЭ является относительно простой способ обработки. Упаковка может быть легко интегрирована в производственный процесс и отформована на месте, наполнена и запечатана.
  • Кроме того, низкий вес упаковки приводит к низким транспортным расходам по отношению к наполнителю.
  • Если возможно вспомнить определенные типы упаковки из полиэтилена высокой плотности из областей их применения (например, бутылки для молока) как «моноэнергетику», они могут использоваться в процессе переработки для продуктов, подходящих для производства упаковки для пищевых продуктов, аналогично ПЭТ.Две компании в Соединенном Королевстве уже используют процесс производства бутылок для молока из полиэтилена высокой плотности такого типа. Планируются и другие объекты.

Поли (этен) (полиэтилен)

Ежегодно производится более 80 миллионов тонн полиэтилена, часто известного как полиэтилен и полиэтилен, что делает его самым важным пластиком в мире. Это составляет более 60% этилена, производимого каждый год.

Поли (этен) выпускается в трех основных формах: низкой плотности (LDPE) (<0.930 г / см -3 ) и линейной низкой плотности (LLDPE) ( около 0,915-0,940 г / см -3 ) и высокой плотности (HDPE) ( около 0,940-0,965 г / см -3 ).

Форма LDPE или LLDPE предпочтительна для пленочной упаковки и для электроизоляции. Из полиэтилена высокой плотности изготавливают контейнеры для бытовой химии, такие как жидкости для мытья посуды, и бочки для промышленной упаковки. Он также экструдируется как трубопровод.

Рисунок 1 Использование поли (этена).

Все формы могут использоваться для литьевых изделий, таких как ведра, ящики для пищевых продуктов и миски для мытья посуды (Таблица 1).

Таблица 1 Примеры использования поли (этена).



В 2013, 2015 2018 (оценка)
Весь мир 81,8 99,6
Северная Америка 2 16,0 18,1
Европа 3 12,9 13,8
Азиатско-Тихоокеанский регион 36.6 47,5
Прочие 16,3 20,2
LDPE LLDPE * HDPE *
Весь мир 4 18.7 24,1 37,5
США 5 3,2 6,3 7,9
Европа 6 8,2 7 5,8

4. Nexant and ChemVision, 2014
5. Руководство по химическому бизнесу 2015 г., Американский химический совет
6. Пластмассы — факты, 2016, PlasticsEurope, 2016
7.LDPE плюс LLDPE

* Многие растения могут производить обе формы поли (этена) и изменять количество, которое они производят каждого типа, в короткие сроки. Оба используют катализатор Циглера (или Филлипса). Если используется чистый этен, образуется HDPE. ЛПЭНП получают, когда к этену добавляют небольшое количество другого алкена, например, бут-1-ена.

Другая форма, обсуждаемая ниже, mLLDPE, в настоящее время производится в гораздо меньших количествах.

Производство поли (этена) (полиэтилена)

Поли (этен) получают несколькими методами путем аддитивной полимеризации этена, который в основном получают крекингом этана и пропана, нафты и газойля.

В Бразилии строится новый завод по производству поли (этена) из этена, который производится из сахарного тростника с помощью биоэтанола. Иногда это называют полиэтиленом на биологической основе (этилен) (полиэтилен на биологической основе).

Полиэтилен низкой плотности (LDPE)

Процесс осуществляется при очень высоком давлении (1000-3000 атм) при умеренных температурах (420-570 К), что можно предсказать из уравнения реакции:

Это процесс радикальной полимеризации, и используется инициатор, например, небольшое количество кислорода и / или органический пероксид.

Этен (чистота более 99,9%) сжимается и подается в реактор вместе с инициатором. Расплавленный поли (этен) удаляют, экструдируют и разрезают на гранулы. Непрореагировавший этен перерабатывается. Средняя молекула полимера содержит 4000-40 000 атомов углерода с множеством коротких ответвлений.

Например,

Может быть представлен следующим образом:

На 1000 атомов углерода приходится около 20 ответвлений. Относительная молекулярная масса и разветвленность влияют на физические свойства LDPE.Ветвление влияет на степень кристалличности, которая, в свою очередь, влияет на плотность материала. LDPE обычно аморфный и прозрачный с кристалличностью около 50%. Разветвления не позволяют молекулам плотно прилегать друг к другу, и поэтому он имеет низкую плотность.

Полиэтилен высокой плотности (HDPE)

При производстве полиэтилена высокой плотности используются в основном катализаторы двух типов:

  • металлоорганический катализатор Циглера-Натта (соединения титана с алкилалюмином).
  • неорганическое соединение, известное как катализатор типа Филлипса. Хорошо известным примером является оксид хрома (VI) на диоксиде кремния, который получают обжигом соединения хрома (III) при ~ 1000 К в кислороде с последующим хранением перед использованием в атмосфере азота.

ПНД производится тремя способами. Все работают при относительно низких давлениях (10-80 атм) в присутствии катализатора Циглера-Натта или неорганического катализатора. Типичный диапазон температур составляет 350-420 К. Во всех трех процессах водород смешивается с этиленом для регулирования длины цепи полимера.

(i) Суспензионный процесс (с использованием либо реактора CSTR (реактор непрерывного действия с мешалкой), либо контура)

Катализатор Циглера-Натта в виде гранул смешивают с жидким углеводородом (например, 2-метилпропаном (изобутаном) или гексаном), который просто действует как разбавитель. Смесь водорода и этена пропускают под давлением в суспензию, и этен полимеризуется в HDPE. Реакция протекает в большом петлевом реакторе при постоянном перемешивании смеси (рис. 4). При открытии клапана продукт высвобождается, а растворитель испаряется, оставляя полимер, все еще содержащий катализатор.Водяной пар, протекая с азотом через полимер, вступает в реакцию с каталитическими центрами, нарушая их активность. Остаток катализатора, оксиды титана (IV) и алюминия, в незначительных количествах остается смешанным в полимере.

Рис. 5 Суспензионный процесс с использованием петлевого реактора.
С любезного разрешения Total.


Рис. 4 Производство поли (этена) с использованием суспензионного процесса
в петлевом реакторе.

(ii) Процесс решения

Второй метод включает пропускание этилена и водорода под давлением в раствор катализатора Циглера-Натта в углеводороде (алкан C 10 или C 12 ). Полимер получают аналогично суспензионному способу.

(iii) Газофазный процесс

Рис. 6 Газофазный процесс низкого давления.

Смесь этена и водорода пропускают через катализатор Филлипса в реакторе с неподвижным слоем (рис. 6).

Этен полимеризуется с образованием зерен HDPE, взвешенных в текущем газе, которые выходят из реактора при открытии клапана.

На современных заводах иногда используются два или более отдельных реактора, включенных последовательно (например, два или более реакторов для суспензии или два газофазных реактора), каждый из которых находится в немного разных условиях, так что свойства различных продуктов из реакторов присутствуют в полученная смесь полимеров, приводящая к широкому или бимодальному молекулярно-массовому распределению.Это обеспечивает улучшенные механические свойства, такие как жесткость и ударная вязкость.

Рис. 7 Гранулы поли (этена), которые затем используются для изготовления пленки, экструзии в трубы или формования.
С любезного разрешения Total.

Порошок HDPE, выходящий из любого из упомянутых выше реакторов, отделяется от разбавителя или растворителя (если используется), экструдируется и измельчается на гранулы.

Этот метод дает линейные полимерные цепи с небольшим количеством разветвлений.Молекулы поли (этена) могут располагаться ближе друг к другу. Полимерные цепи можно представить так:

Это приводит к прочным межмолекулярным связям, что делает материал более прочным, плотным и жестким, чем LDPE. Полимер непрозрачный.

Линейный полиэтилен низкой плотности (ЛПЭНП)

Поли (этен) низкой плотности имеет множество применений, но способ производства под высоким давлением, которым он производится, требует больших капитальных затрат. Однако была разработана элегантная технология, основанная как на катализаторах Циглера-Натта, так и на неорганических катализаторах, для производства линейного полиэтилена низкой плотности LLDPE, который имеет даже улучшенные свойства по сравнению с LDPE.Если выбран катализатор Циглера-Натта, можно использовать любой из трех процессов: суспензию, раствор и газовую фазу. Когда используют неорганический катализатор, используют газофазный процесс.

В сырье добавляют небольшие количества сомономера, такого как бут-1-ен или гекс-1-ен. Мономеры полимеризованы случайным образом, и есть небольшие ответвления, состоящие из нескольких атомов углерода, вдоль линейных цепей.

Например, для бут-1-ена, CH 3 CH 2 CH = CH 2 , структура полимера:

Боковые цепи известны как боковые группы или разветвления с короткой цепью.Молекулу можно представить как:

Структура по существу линейная, но из-за короткоцепочечного разветвления имеет низкую плотность. Структура придает материалу гораздо лучшую упругость, прочность на разрыв и гибкость без использования пластификаторов. Это делает линейный полиэтилен низкой плотности (этен) идеальным материалом для производства пленочных продуктов, например, используемых в упаковке.

Свойства полимера и, следовательно, его применение можно варьировать, варьируя пропорцию этена и сомономера и используя разные сомономеры.Все это можно сделать без остановки завода, что является огромным преимуществом.

Металлоцен, линейный поли (этен) низкой плотности (mLLDPE)

Рис. 8 Полиэтиленовая пленка широко используется для упаковки пищевых продуктов.
С любезного разрешения BP.

Этот поли (этен), известный как mLLDPE, производится с помощью нового семейства катализаторов — металлоценов. Другое название этого семейства — катализатор с единым центром .Преимущество заключается в том, что mLLDPE намного более гомогенный с точки зрения молекулярной структуры, чем классический LLDPE, производимый катализаторами Циглера-Натта. Каждый катализатор представляет собой катализатор с одним центром полимеризации, который дает одну и ту же цепь PE. Химики сравнили структуру металлоценов со структурой сэндвича. Между слоями органических соединений есть переходный металл (часто цирконий или титан).

Катализаторы даже более специфичны, чем оригинальные катализаторы Циглера-Натта, и можно контролировать молекулярную массу полимера, а также его конфигурацию.Обычно используются процессы навозной жижи или раствора.

Поли (этен), произведенный с использованием металлоцена, можно использовать в виде очень тонкой пленки, которая имеет отличные оптические свойства и герметичность, что делает их очень эффективными для упаковки пищевых продуктов. Настоящим плюсом металлоценовых катализаторов являются улучшенные механические свойства пленок из mLLDPE.

Сополимеры

Этен образует сополимеры с пропеном, которые обладают очень полезными свойствами.

Дата последнего изменения: 27 апреля 2017 г.

Все, что вам нужно знать о полиэтилене (PE)

Что такое полиэтилен и для чего он используется?

Полиэтилен — это термопластичный полимер с переменной кристаллической структурой и широким спектром применения в зависимости от конкретного типа.Это один из наиболее широко производимых пластиков в мире, ежегодно во всем мире производятся десятки миллионов тонн. Коммерческий процесс (катализаторы Циглера-Натта), обеспечивший такой успех полиэтилену, был разработан в 1950-х годах двумя учеными, Карлом Циглером из Германии и Джулио Натта из Италии.

Существует несколько типов полиэтилена, каждый из которых лучше всего подходит для различных областей применения. Вообще говоря, полиэтилен высокой плотности (HDPE) намного более кристаллический и часто используется в совершенно иных обстоятельствах, чем полиэтилен низкой плотности (LDPE).Например, LDPE широко используется в пластиковой упаковке, такой как продуктовые пакеты или полиэтиленовая пленка. HDPE, напротив, широко применяется в строительстве (например, при производстве дренажных труб). Полиэтилен со сверхвысокой молекулярной массой (UHMW) находит широкое применение в таких вещах, как медицинские устройства и пуленепробиваемые жилеты.

Какие бывают типы полиэтилена?

Полиэтилен обычно подразделяется на одно из нескольких основных соединений, наиболее распространенными из которых являются ПЭНП, ЛПЭНП, ПЭВП и полипропилен сверхвысокой молекулярной массы.Другие варианты включают полиэтилен средней плотности (MDPE), полиэтилен со сверхнизкой молекулярной массой (ULMWPE или PE-WAX), высокомолекулярный полиэтилен (HMWPE), сшитый полиэтилен высокой плотности (HDXLPE), сшитый полиэтилен (PEX или XLPE), полиэтилен очень низкой плотности (VLDPE) и хлорированный полиэтилен (CPE).

  • Полиэтилен низкой плотности (LDPE) — очень гибкий материал с уникальными свойствами текучести, что делает его особенно подходящим для изготовления пакетов и других пластиковых пленок.LDPE имеет высокую пластичность, но низкую прочность на разрыв, что проявляется в реальных условиях по его склонности к растяжению при деформации.
  • Линейный полиэтилен низкой плотности (LLDPE) очень похож на LDPE, но предлагает дополнительные преимущества. В частности, свойства ЛПЭНП можно изменить, регулируя составные части формулы, а общий процесс производства ЛПЭНП обычно менее энергоемкий, чем ПЭНП.
  • Полиэтилен высокой плотности (HDPE) — это прочный, умеренно жесткий пластик с высококристаллической структурой.Он часто используется в пластиковых упаковках для молока, стиральных порошков, мусорных баков и разделочных досок.
  • Полиэтилен сверхвысокой молекулярной массы (UHMW) представляет собой чрезвычайно плотную версию полиэтилена, молекулярная масса которого обычно на порядок больше, чем у HDPE. Из него можно наматывать нити с прочностью на разрыв, во много раз превышающей прочность стали, и его часто используют в пуленепробиваемых жилетах и ​​другом высокопроизводительном оборудовании.

Каковы характеристики полиэтилена?

Теперь, когда мы знаем, для чего он используется, давайте рассмотрим некоторые ключевые свойства полиэтилена.Полиэтилен классифицируется как «термопласт» (в отличие от «термореактивного пластика») в зависимости от того, как пластик реагирует на тепло. Термопластические материалы становятся жидкими при их температуре плавления (110–130 градусов Цельсия в случае ПЭНП и ПЭВП соответственно). Полезным признаком термопластов является то, что их можно нагреть до точки плавления, охладить и снова нагреть без значительного разрушения. Вместо горения термопласты, такие как полиэтилен, разжижаются, что позволяет легко формовать их под давлением, а затем перерабатывать.Напротив, термореактивные пластмассы можно нагреть только один раз (обычно в процессе литья под давлением). Первое нагревание вызывает затвердевание термореактивных материалов (аналогично двухкомпонентной эпоксидной смоле), что приводит к химическим изменениям, которые нельзя отменить. Если вы попытаетесь нагреть термореактивный пластик во второй раз до высокой температуры, он загорится. Эта характеристика делает термореактивные материалы плохими кандидатами на переработку.

Различные типы полиэтилена обладают большим разнообразием кристаллической структуры.Чем менее кристаллический (или аморфный) пластик, тем больше он проявляет тенденцию к постепенному размягчению; то есть пластик будет иметь более широкий диапазон между температурой стеклования и температурой плавления. Кристаллический пластик, напротив, демонстрирует довольно резкий переход от твердого тела к жидкости.

Полиэтилен является гомополимером, поскольку состоит из одного мономерного компонента (в данном случае этилена: Ch3 = Ch3).

Почему полиэтилен так часто используют?

Полиэтилен — чрезвычайно полезный товарный пластик, особенно среди дизайнерских компаний.Из-за разнообразия вариантов PE он используется в широком диапазоне приложений. Если это не требуется для конкретного приложения, мы обычно не используем полиэтилен в процессе проектирования в Creative Mechanisms. Для некоторых проектов деталь, которая в конечном итоге будет производиться серийно из полиэтилена, может быть прототипирована с использованием других, более удобных для прототипов материалов, таких как АБС.

PE не доступен в качестве материала для 3D-печати. Он может быть обработан на станке с ЧПУ или подвергнут вакуумному формованию.

Как производится полиэтилен?

Полиэтилен, как и другие пластмассы, начинается с перегонки углеводородного топлива (в данном случае этана) на более легкие группы, называемые «фракциями», некоторые из которых объединяются с другими катализаторами для производства пластмасс (обычно посредством полимеризации или поликонденсации).Более подробно об этом процессе можно прочитать здесь.

PE для разработки прототипов на станках с ЧПУ и 3D-принтерах

PE доступен в листах, стержнях и даже специальных формах во множестве вариантов (LDPE, HDPE и т. Д.), Что делает его хорошим кандидатом для процессов субтрактивной обработки на фрезерном или токарном станке. Цвета обычно ограничиваются белым и черным.

PE в настоящее время недоступен для FDM или любого другого процесса 3D-печати (по крайней мере, не от двух основных поставщиков: Stratasys и 3D Systems).PE похож на PP в том, что с ним может быть сложно создать прототип. Если вам нужно использовать его в процессе разработки прототипа, вы в значительной степени застряли с ЧПУ или вакуумным формованием.

Токсичен ли полиэтилен?

В твердой форме, нет. Полиэтилен часто используется при обработке пищевых продуктов. Он может быть токсичным при вдыхании и / или попадании в кожу или глаза в виде пара или жидкости (т. Е. Во время производственных процессов). Будьте осторожны и особенно соблюдайте инструкции по обращению с расплавленным полимером.

Каковы недостатки полиэтилена?

Полиэтилен, как правило, дороже полипропилена (который может использоваться в аналогичных деталях). ПЭ уступает только ПП как лучший выбор для живых петель.

Если ваша компания требует использования полиэтилена для питания вашего продукта, обратитесь в дизайнерскую фирму, которая знает плюсы и минусы полиэтилена и сможет найти способ реализовать его или найти лучшую замену. Чтобы назначить встречу с командой Creative Mechanisms, свяжитесь с нами сегодня.

Производство полиэтилена в Индии резко возрастает.

Полиэтилен (ПЭ) всегда был одним из основных полимеров, используемых в Индии и во всем мире. Его применение охватывает множество отраслей, включая автомобилестроение, производство пластика и упаковку, строительство, электротехнику и электронику, товары народного потребления и другие. По оценкам, рынок полиэтилена в Индии растет в среднем на 9 процентов. Это выгодно отличается от Китая, где рынок полиэтилена растет в среднем на 7 процентов.Здесь важно отметить, что нефтехимия составляет около 30 процентов в очень сильной химической промышленности Индии.

Переход от импорта к экспорту

В отличие от прошлого, когда Индия была нетто-импортером полиэтилена в течение многих лет, в настоящее время она готова стать нетто-экспортером с начала 2018 года (поскольку ожидается, что общий прирост мощностей опережает рост спроса). Учитывая растущий спрос на полиэтилен в Индии, в прошлом году были добавлены новые мощности в Гуджарате.В целом годовая мощность производства полиэтилена в Индии составила более 3 миллионов тонн в течение 2016 года, что в 2017 году превысило отметку в 5 миллионов метрических тонн. Кроме того, с появлением новых возможностей для полиэтилена в Индии многие другие компании-производители полиэтилена также готовятся к увеличению своих производственных мощностей. . Reliance Industries Limited, ONGC Petro adds Limited и GAIL (India) Limited являются основными производителями полиэтилена (включая полиэтилен низкой плотности (LDPE), линейный полиэтилен низкой плотности (LLDPE) и полиэтилен высокой плотности (HDPE)) в Индии.

Что касается спроса и предложения на сырье, используемое для производства полиэтилена, Китай занимает заметную долю в мире. В Китае его производят из угля в олефины, и на этих предприятиях производится около 1,6 млн тонн этилена. Однако из-за экологических проблем Китай был вынужден ограничить свои производственные мощности (на некоторое время), тем самым предоставив индийским производителям больше возможностей. С другой стороны, Индия в значительной степени полагается на США.З. для этана (для производства ПЭ). Reliance Industries Limited импортировала 1,3-1,4 млн тонн этана из Северной Америки в 2017-2018 годах.

В поисках новых рынков

Уровень экспорта также увеличился на 180 процентов в третьем квартале 2017 года по сравнению с тем же периодом 2016 года. Помимо внутреннего рынка, индийские производители будут использовать регионы Юго-Восточной Азии, Турции, Африки и части Китая. Рост экспорта из Индии в определенной степени повлияет на рынки США и Ближнего Востока.В прошлом году экспортные продажи США и стран Ближнего Востока снизились примерно на 8% и 5% соответственно. Фактически, нетбэк, реализованный при продаже в Китай, лучше, чем в любой другой стране в Азии, поскольку ожидается, что спрос на чистый полиэтилен вырастет после правительственного запрета на импорт пластиковых отходов в этом году. Таким образом, захват китайского рынка был бы самой большой выгодой для индийских игроков PE. Кроме того, близость (к Индии) делает Индию привлекательным вариантом для Китая благодаря более низким транспортным расходам.

Готовимся к долгосрочному успеху

Поставщики в Индии в настоящее время стратегически повысили цены, чтобы сократить разрыв в стоимости между отечественными и импортными материалами, но сохраняя при этом небольшую разницу, чтобы обеспечить хороший контроль над внутренним спросом, а также целевыми экспортными рынками. Отечественные покупатели также стали осторожнее относиться к импортируемым материалам, поскольку уровень импорта упал в среднем на 8-10 процентов. Сказано и сделано, импульс PE будет продолжаться, подкрепленный многообещающими сигналами от торговцев и производителей на рынке.Фактически, трейдеры больше стремятся экспортировать материал, чем импортировать (который в ближайшие годы практически перестанет существовать). В настоящее время динамика складывается в пользу производства полиэтилена в Индии. Однако только время покажет, сохранятся ли текущие темпы производства.

Источники :

Как делается пластик? — Британская федерация пластмасс

Автор: Д-р Паял Бахети

Пластик может быть «синтетическим» или «биологическим».Синтетические пластики получают из сырой нефти, природного газа или угля. В то время как пластик на биологической основе производится из возобновляемых продуктов, таких как углеводы, крахмал, растительные жиры и масла, бактерии и другие биологические вещества.

Подавляющее большинство используемых сегодня пластмасс является синтетическим из-за простоты производственных методов, связанных с переработкой сырой нефти. Однако растущий спрос на ограниченные запасы нефти вызывает потребность в новых пластмассах из возобновляемых источников, таких как отходы биомассы или отходы животноводства в промышленности.

В Европе только небольшая часть (около 4-6%) наших запасов нефти и газа идет на производство пластмасс, а остальная часть используется для транспорта, электричества, отопления и других применений (Ref)

Большая часть используемого сегодня пластика получается следующими этапами:

1. Добыча сырья (в основном сырая нефть и природный газ, но также и уголь) — это сложная смесь тысяч соединений, которые затем необходимо переработать.

2. Процесс нефтепереработки превращает сырую нефть в различные нефтепродукты — они превращаются в полезные химические вещества, включая «мономеры» (молекулы, которые являются основными строительными блоками полимеров). В процессе переработки сырая нефть нагревается в печи, которая затем отправляется в установку дистилляции, где тяжелая сырая нефть разделяется на более легкие компоненты, называемые фракциями. Один из них, называемый нафта, является важнейшим компонентом для производства большого количества пластика.Однако есть и другие способы, например, использование газа.

Рис. 1. Наглядное изображение того, как изготавливаются пластмассы (Рисунок адаптирован из ссылки)

3. Полимеризация — это процесс в нефтяной промышленности, где легкие олефиновые газы (бензин), такие как этилен, пропилен, бутилен (т. Е. Мономеры), превращаются в углеводороды с более высокой молекулярной массой (полимеры). Это происходит, когда мономеры химически связаны в цепи. Есть два разных механизма полимеризации:

  1. Аддитивная полимеризация

Реакция аддитивной полимеризации — это когда один мономер соединяется со следующим (димером), а димер со следующим (тример) и так далее.Это достигается за счет введения катализатора, обычно пероксида. Этот процесс известен как полимеры с ростом цепочки, поскольку он добавляет по одной мономерной единице за раз. Обычными примерами аддитивных полимеров являются полиэтилен, полистирол и поливинилхлорид.

  1. Конденсационная полимеризация

Конденсационная полимеризация включает соединение двух или более различных мономеров путем удаления небольших молекул, таких как вода. Также требуется катализатор для реакции, протекающей между соседними мономерами.Это называется ступенчатым ростом, потому что вы можете, например, добавить существующую цепочку к другой цепочке. Обычными примерами конденсационных полимеров являются полиэстер и нейлон.

4. Компаундирование / переработка

При компаундировании различные смеси материалов смешиваются в расплаве (смешиваются путем плавления) с получением рецептур для пластмасс. Обычно для этой цели используют экструдер определенного типа, за которым следует гранулирование смеси. Затем экструзия или другой процесс формования превращает эти гранулы в готовый или полуфабрикат.Компаундирование часто происходит на двухшнековом экструдере, где гранулы затем перерабатываются в пластмассовые предметы уникального дизайна, различного размера, формы, цвета с точными свойствами в соответствии с заранее определенными условиями, установленными в обрабатывающей машине.

Более подробная информация о том, как производится пластик, представлена ​​в следующих разделах:

  1. Полимер против пластика
  2. Что такое углеводороды?
  3. Как синтетический пластик создается из сырой нефти?
  4. Как получается пластик из нафты?
  5. Что является основным ингредиентом пластика?
  6. Какой был первый пластик, сделанный человеком?
  7. Что раньше использовали пластик?
  8. Можно ли сделать пластик без масла?

Все пластмассы по существу являются полимерами, но не все полимеры являются пластиками.

Термин «полимер » и «мономер » происходит от греческих слов: где «поли» означает «множество», «мер» означает «повторяющееся звено», а слово «моно» означает «один». Это буквально означает, что полимер состоит из множества повторяющихся мономеров звеньев. Полимеры — это более крупные молекулы, образованные путем ковалентного соединения множества мономерных звеньев вместе в виде цепочек, подобных жемчужинам на нити жемчуга.

Слово пластик происходит от «пластикус» (лат. «Способный к формованию») и «пластикос» (греч. «Пригодный для литья»).Когда мы говорим о пластмассах, мы имеем в виду органические полимеры (синтетические или натуральные) с высокой молекулярной массой, которые смешаны с другими веществами.

Пластмассы — это высокомолекулярные органические полимеры, состоящие из различных элементов, таких как углерод, водород, кислород, азот, сера и хлор. Они также могут быть получены из атома кремния (известного как силикон) вместе с углеродом; распространенным примером являются силиконовые грудные имплантаты или силикон-гидрогель для оптических линз. Пластмассы состоят из полимерной смолы, часто смешанной с другими веществами, называемыми добавками.

«Пластичность» — это термин, используемый для описания свойства, характеристики и свойства материала, который может необратимо деформироваться без разрушения. Пластичность описывает, выдержит ли полимер температуру и давление во время процесса формования.

Chemistry позволяет изменять различные параметры для настройки свойств полимеров. Мы можем использовать разные элементы, изменять тип мономеров и переставлять их по разному образцу, чтобы изменить форму полимера, его молекулярную массу или другие химические / физические свойства.Это позволяет разрабатывать пластики с правильными свойствами для конкретного применения.

Большинство используемых сегодня пластмасс получают из углеводородов, получаемых из сырой нефти, природного газа и угля — ископаемого топлива.

Что такое углеводород?

Углеводороды — это органические соединения (могут быть алифатическими или ароматическими), состоящие из углерода и водорода . Алифатические углеводороды не имеют циклических бензольных колец, в то время как ароматические углеводороды имеют бензольные кольца.

Углерод ( C , атомный номер = 6) имеет валентность четыре, что означает, что он имеет четыре электрона во внешней оболочке. Он способен образовывать химические связи с четырьмя другими электронами любого элемента периодической таблицы (для углеводорода он образует пары с водородом). С другой стороны, водород ( H , с атомным номером = 1) имеет только один электрон в валентной оболочке, поэтому четыре из этих H-атомов готовы к спариванию с C-атомом, образуя одинарную связь, чтобы дать CH 4 молекула.Молекула CH 4 называется метаном, который является простейшим углеводородом и первым членом семейства алканов. Точно так же, если два атома углерода связаны вместе, они могут связываться с шестью атомами водорода, причем по три на каждый атом углерода, чтобы получить химическую формулу CH 3 -CH 3 (или C 2 H 6 ), известный как этан, и серия продолжается следующим образом.

Семейство алканов : метан (CH 4 ), этан (CH 3 -CH 3 или C 2 H 6 ), пропан (CH 3 -CH 2 -CH 3 ), бутан (CH 3 -CH 2 -CH 2 -CH 3 ), пентан (CH 3 -CH 2 -CH 2 — CH 2 -CH 3 ), гексан, гептан, октан, нонан, додекан, ундекан и так далее.

Обратите внимание, что этот тип связи с углеродом и водородом представляет собой насыщенную связь (сигма-связь обозначается как σ-связь). Также может быть ненасыщенная связь , где пи-связь (π-связь) присутствует вместе с сигма-связью, дающей двойные углерод-углеродные связи ( алкенов ), или иметь две π-связи с сигмой, дающей тройную углерод-углеродную связь ( алкинов ), что очень сильно зависит от типа гибридизации между элементами.

Семейство алкенов : Этилен (CH 2 = CH 2 или C 2 H 4 ), пропилен (CH 2 = CH-CH 2 ), 1-бутилен (CH 2 = CH-CH 2 -CH 3 ), 2-бутилен (CH 3 -CH = CH-CH 3 ) и так далее.(Обратите внимание, что 1-бутилен и 2-бутилен являются изомерами бутилена).

Алкиновые углеводороды : этин (CH ≡ CH или C 2 H 2 ), пропин (CH≡C-CH 3 ), 1-бутин (CH≡C-CH 2 -CH 3 ), 2-бутин (CH 3 -CH≡CH-CH 3 ) и так далее.

Что такое ископаемое топливо и откуда оно берется?

Ископаемое топливо — это в основном сырая нефть, природный газ и уголь, состоящие из углерода, водорода, азота, серы, кислородных элементов и других минералов (рис. 1, исх.).Общепринятая теория состоит в том, что эти углеводороды образуются из останков живых организмов, называемых планктонами (крошечные растения и животные), существовавших в юрскую эпоху. Планктоны были погребены глубже под тяжелыми слоями отложений в мантии Земли из-за сжатия из-за огромного количества тепла и давления. Мертвые организмы разлагались без кислорода, что превращало их в крошечные карманы из нефти и газа. Затем сырая нефть и газ проникают в породы, которые в конечном итоге накапливаются в коллекторах.Скважины с нефтью и природным газом находятся на дне наших океанов и под ними. Уголь в основном получают из мертвых растений (см.).

Рис. 2. Элементный состав ископаемого топлива (исх.).

Ученые также подвергли сомнению эту теорию. Недавнее исследование, проведенное Институтом Карнеги Nature Geoscience в сотрудничестве с российскими и шведскими коллегами, показало, что органическое вещество не может быть источником тяжелых углеводородов и что они могут существовать уже глубоко под землей.Эксперты обнаружили, что этан и другие тяжелые углеводороды могут быть получены, если условия давления и температуры могут быть сопоставлены с условиями, присутствующими глубоко внутри ядра Земли. Это означает, что углеводороды могут образовываться в верхней мантии, которая представляет собой слой Земли между корой и ядром. Они демонстрируют это, подвергая метан лазерной термообработке в верхнем слое Земли, который затем превращается в молекулу водорода, этан, пропан, петролейный эфир и графит. Затем ученые подвергли этан тем же условиям, при которых в результате обратимости образовался метан.Вышеуказанные данные показывают, что эти углеводороды могут образовываться естественным путем без остатков растений и животных (исх.).

3. Как синтетический пластик создается из сырой нефти?

Синтетический пластик поступает из нефтехимии. Когда источник нефти под поверхностью Земли идентифицируется, в скалах в земле просверливаются отверстия для добычи нефти.

Добыча нефти — Нефть перекачивается из-под земли на поверхность, где танкеры используются для транспортировки нефти на берег.Бурение нефтяных скважин также может производиться под океаном с использованием платформ. Насосы разного размера могут производить от 5 до 40 литров масла за такт (рис. 1).

Переработка нефти — Нефть перекачивается по трубопроводу длиной в тысячи миль и транспортируется на нефтеперерабатывающий завод (рис. 1). Разлив нефти из трубопровода во время транспортировки может иметь как немедленные, так и долгосрочные экологические последствия, но приняты меры безопасности для предотвращения и минимизации этого риска.

Рисунок 3: Фракционная перегонка сырой нефти

Перегонка сырой нефти и производство нефтехимических продуктов — Сырая нефть представляет собой смесь сотен углеводородов, которая также содержит некоторые твердые вещества и растворенные в них газообразные углеводороды из семейства алканов (в основном это CH 4 и C 2 H 6 , но это может быть C 3 H 8 или C 4 H 10 ).Сырая нефть сначала нагревается в печи, затем полученная смесь подается в виде пара в колонну фракционной перегонки. Колонна фракционной перегонки разделяет смесь на различные отсеки, называемые фракциями. Существует температурный градиент в дистилляционной башне, где верх холоднее основания. Смесь жидкой и паровой фракций разделяется в башне в зависимости от их веса и температуры кипения (точка кипения — это температура, при которой жидкая фаза переходит в газообразную).Когда пары испаряются и встречаются с жидкой фракцией, температура которой ниже точки кипения пара, она частично конденсируется. Эти пары испаряющейся сырой нефти конденсируются при разной температуре в башне. Пары (газы) самых легких фракций (бензин и нефтяной газ) текут в верхнюю часть колонны, жидкие фракции промежуточного веса (керосин и дизельные дистилляты) задерживаются в середине, более тяжелые жидкости (называемые газойлями) разделяются ниже , в то время как самые тяжелые фракции (твердые вещества) с самыми высокими температурами кипения остаются в основании башни.Каждая фракция в колонке содержит углеводороды с одинаковым числом атомов углерода, молекулы меньшего размера расположены вверху, а более длинные — ближе к низу колонки (см.). Таким образом, нефть разлагается на нефтяной газ, бензин, парафин (керосин), нафту, легкую нефть, тяжелую нефть и т. Д.

После стадии дистилляции полученные длинноцепочечные углеводороды превращаются в углеводороды, которые затем могут быть превращены во многие важные химические вещества, которые мы используем для приготовления широкого спектра продуктов, применимых от пластика до фармацевтики.

Крекинг углеводородов — это основной процесс, который под воздействием высокой температуры и давления расщепляет смесь сложных углеводородов на более простые алкены / алканы с низкой относительной молекулярной массой (плюс побочные продукты).

Крекинг может осуществляться двумя способами: крекинг с водяным паром и каталитический крекинг.

При паровом крекинге используется высокая температура и давление для разрыва длинных цепей углеводородов без катализатора, в то время как каталитический крекинг добавляет катализатор, который позволяет процессу протекать при более низких температурах и давлениях.

Сырье, используемое в нефтехимической промышленности, — это в основном нафта и природный газ, полученный при переработке нефти в нефтехимическом сырье. При паровом крекинге используется сырье из смеси углеводородов из различных фракций, таких как газы-реагенты (этан, пропан или бутан) из природного газа или жидкости ( нафта или газойль ) (Рисунок 4).

Рис. 4. Различные химические вещества, полученные из ископаемого топлива после переработки нефти.

(Нафта представляет собой смесь углеводородов C 5 — C 10 , полученных при перегонке сырой нефти).

Например, углеводород декана расщепляется на такие продукты, как пропилен и гептан, где первый затем используется для производства полипропилена (рис. 5).

Рис. 5. Представление крекинга декана для превращения в пропилен и гептан.

Молекулы сырья превращаются в мономеры, такие как этилен, пропилен, бутен и другие.Все эти мономеры содержат двойные связи, так что атомы углерода могут впоследствии реагировать с образованием полимеров.

Полимеризация — углеводородные мономеры затем связываются вместе с помощью механизма химической полимеризации с образованием полимеров. В процессе полимеризации образуются густые вязкие вещества в виде смол, которые используются для изготовления пластмассовых изделий. Если мы рассмотрим здесь случай этиленового мономера; этилен — газообразный углеводород. Когда он подвергается воздействию тепла, давления и определенного катализатора, он объединяется в длинные повторяющиеся углеродные цепи.Эти соединенные молекулы (полимер) представляют собой пластиковую смолу, известную как полиэтилен (PE).

Производство пластика на основе полиэтилена — Поли (этилен) перерабатывается на заводе по производству пластиковых гранул. Гранулы переливают в реактор, расплавляют до состояния густой жидкости и отливают в форму. Жидкость остывает, превращаясь в твердый пластик и образуя готовый продукт. Обработка полимера также включает добавление пластификаторов, красителей и антипиренов.

Типы полимеризации

Синтетический пластик получают в результате реакции, известной как полимеризация, которая может осуществляться двумя разными способами:

Аддитивная полимеризация : Синтез включает объединение мономеров в длинную цепь.Один мономер соединяется со следующим и так далее, когда катализатор вводится в процессе, известном как полимеры роста цепи, добавляя одно мономерное звено за раз. Считается, что некоторые реакции аддитивной полимеризации не создают побочных продуктов, и реакцию можно проводить в паровой фазе (то есть в газовой фазе), диспергированной в жидкости. Примеры: полиэтилен, полипропилен, поливинилхлорид и полистирол.

Конденсационная полимеризация : В этом случае два мономера объединяются, образуя димер (две единицы), высвобождая побочный продукт.Затем димеры могут соединяться с образованием тетрамеров (четыре звена) и так далее. Эти побочные продукты необходимо удалить для успеха реакции. Наиболее распространенным побочным продуктом является вода, которую легко очистить и утилизировать. Побочные продукты также могут быть ценным сырьем, которое повторно используется в потоке сырья.

Примеры: нейлон (полиамид), полиэстер и полиуретан.

Пластик часто делают из нафты.Например, этилен и пропилен являются основным сырьем для пластика на масляной основе, получаемого из нафты.

Что такое нафта?

Есть разные виды нафты. Это термин, используемый для описания группы летучих смесей жидких углеводородов, полученных перегонкой сырой нефти. Это смесь углеводородов от C 5 до C 10 .

Нафта термически разлагается при высокой температуре (~ 800 ° C) в установке парового крекинга в присутствии водяного пара, где она распадается на легкие углеводороды, известные как основные промежуточные звенья.Это олефины и ароматические углеводороды. Среди олефинов C 2 (этилен), C 3 (пропилен), C 4 (бутан и бутадиен). Ароматические углеводороды состоят из бензола, толуола и ксилола. Эти небольшие молекулы связаны друг с другом в длинные молекулярные цепи, называемые полимерами. Когда полимер поступает с химического завода, он все еще не в форме пластика — он находится в форме гранул или порошков (или жидкостей). Прежде чем они смогут стать повседневным пластиком, они должны пройти ряд преобразований.Их замешивают, нагревают, плавят и охлаждают в предметы различной формы, размера и цвета с точными свойствами в соответствии с технологическими трубками.

Например, для полимеризации этилена в полиэтилен (PE) добавляются инициаторы для запуска цепной реакции, только после образования PE он отправляется на переработку путем добавления некоторых химикатов (антиоксидантов и стабилизаторов). После этого экструдер преобразует полиэтилен в нити, а затем измельчители преобразуют его в гранулы полиэтилена.Затем фабрики перерабатывают их в конечную продукцию.

Основным ингредиентом большинства пластических материалов является производное сырой нефти и природного газа.

Существует много разных типов пластиков — прозрачные, непрозрачные, однотонные, гибкие, жесткие, мягкие и т. Д.

Пластиковые изделия часто представляют собой полимерную смолу, которую затем смешивают со смесью добавок (см. Полимер vs.пластик). Добавки важны, поскольку каждая из них используется для придания пластику заданных оптимальных свойств, таких как ударная вязкость, гибкость, эластичность, цвет, или для того, чтобы сделать их более безопасными и гигиеничными для использования в определенных условиях (см.).

Тип пластика, из которого изготовлен продукт, иногда можно определить по номеру на дне пластиковых контейнеров. Некоторые из основных типов пластика и исходного мономера приведены ниже (Таблица 1). В этой таблице показаны типы пластика и мономеры, из которых он состоит.

Таблица 1. Основные типы полимеров, мономеры и их химическая структура

Идентификационный код смолы

Полимеры

Мономеры

PETE

Полиэтилентерефталат (ПЭТ)

Этиленгликоль и диметилтерефталат

ПНД

Полиэтилен высокой плотности

(HDPE)

Этилен (CH 2 = CH 2 )

* (меньшее разветвление между полимерными цепями)

ПВХ

Поливинилхлорид

(ПВХ)

Винилхлорид (CH 2 = CH-Cl)

ПВД

Полиэтилен низкой плотности

(ПВД)

Этилен (CH 2 = CH 2 )

* (чрезмерное разветвление)

PP

Полипропилен

(ПП)

Пропилен (CH 3 -CH = CH 2 )

л.с.

Полистирол

(ПС)

Стирол

прочие

Пластмассы прочие, включая акрил, поликарбонаты, полимолочную кислоту (PLA), волокна, нейлон

Для одного полимера используются разные мономеры.

Например, PLA из молочной кислоты

* Мономером, используемым в LDPE и HDPE, является этилен, но есть разница в степени разветвления.

Мезоамериканские культуры (ольмеки, майя, ацтеки, 1500 г. до н.э.) использовали натуральный латекс и резину для изготовления водонепроницаемых контейнеров и одежды.

Александр Паркс (Великобритания, 1856 г.) запатентовал первый искусственный биопластик, названный Parkesine, сделанный из нитрата целлюлозы. Парксин был твердым, гибким и прозрачным пластиком. Джон Уэсли Хаятт (США, 1860-е годы) разбогател на изобретении Паркса. Братья Хаятт улучшили пластичность нитрата целлюлозы, добавив камфору, и переименовали пластик в целлулоид. Целью было производство бильярдных шаров, которые до этого делались из слоновой кости. Многие считают изобретение самым ранним примером искусственного биопластика (см.).

Первым по-настоящему синтетическим пластиком был бакелит, сделанный из фенола и формальдегидной смолы. Лео Бекеланд (Бельгия, 1906 г.) изобрел бакелит, который был придуман как «национальный исторический памятник химии», поскольку он полностью произвел революцию во всех отраслях современной жизни. Обладает высокой устойчивостью к электричеству, теплу и химическим веществам. Он обладает непроводящими свойствами, что чрезвычайно важно при проектировании электронных устройств, таких как корпуса радиоприемников и телефонов. (исх.).

До появления пластика мы использовали дерево, металл, стекло и керамику, а также материалы животного происхождения, такие как рог, кость и кожу.

Для хранения использовались формованные глины (керамика), смешанные со стеклом, что означало, что емкости часто были тяжелыми и хрупкими.

Появились натуральные материалы из коры каучукового дерева — камедь (латексная смола), смесь была липкой и пластичной, но не пригодной для хранения.

В 18 веке Чарльз Гудиер случайно обнаружил каучук — он добавил

В 18 веке Чарльз Гудиер случайно обнаружил каучук — он добавил серу в горячий неочищенный каучук, который вступил в реакцию и сделал резину упругой, которая при охлаждении становилась эластичной, то есть имела свойство возвращаться в исходную форму (см.).

Да, пластик можно создавать не только из нефти, но и из других источников.

Хотя сырая нефть является основным источником углерода для современного пластика, множество вариантов производится из возобновляемых материалов. Пластик, сделанный без масла, продается как пластик на биологической основе или биопластик. Они сделаны из возобновляемой биомассы, такой как:

  • Лигнин, целлюлоза и гемицеллюлоза,
  • терпенов,
  • Жиры и масла растительные,
  • Углеводы (сахар из сахарного тростника и т. Д.)
  • Переработанные пищевые отходы
  • Бактерии

Однако следует отметить, что биопластики не всегда автоматически становятся более устойчивой альтернативой.Биопластики различаются по способам разложения, и биопластики, как и любой другой материал, требуют ресурсов для своего производства.

Биопласты, такие как PLA, например, представляют собой биоразлагаемый материал, который будет разлагаться в определенных условиях окружающей среды, но не может разлагаться биологически во всех климатических условиях. Поэтому требуется поток отходов из пластика на основе PLA. В случае PLA это чувствительный полиэстер, который начинает разлагаться во время процедуры переработки и может в конечном итоге загрязнить существующий поток переработки пластика (см.).

Но биопластики могут найти множество применений, если их проектировать с учетом правильного потока отходов.

Биопластики — это потенциальные материалы для производства одноразового пластика, например, необходимого для изготовления биоразлагаемых бутылок и упаковочных пленок. Например, в 2019 году исследователь из Сассекского университета создал прозрачную пластиковую пленку из отходов рыбьей кожи и водорослей; называется МаринаТекс (Ref). Биополимеры также были исследованы для медицинских применений, таких как контролируемое высвобождение лекарств, упаковка лекарств и рассасывающиеся хирургические швы (ссылка, ссылка).

Морис Лемуан (Франция, 1926) открыл первый биопластик, полученный из бактерий, полигидроксибутирата (ПОБ), из бактерии Bacillus megaterium. По мере того как бактерии потребляют сахар, они производят полимеры (см.). Важность изобретения Лемуана игнорировалась до тех пор, пока нефтяной кризис, разразившийся в середине 1970-х годов, не вызвал интерес к поиску заменителей нефтепродуктов.

Генри Форд (США, 1940) использовал биопластик, сделанный из соевых бобов, для некоторых деталей автомобилей.Форд прекратил использование соевых пластиков после Второй мировой войны из-за излишков недорогих поставок нефти (см.).

Развитие метаболической и генной инженерии расширило исследования биопластиков, и стали известны приложения для многих типов биопластиков, в частности, PHB и полигидроксиалканоат (PHA), хотя постоянно происходит множество других интересных разработок.

3.Производство: материалы и обработка | Наука и инженерия полимеров: новые горизонты исследований

реакций конденсации были использованы для создания гибридных гелей, которые не усаживаются при сушке.

Выделение молекул органических красителей, жидких кристаллов или биологически активных частиц в неорганических или гибридных матрицах привело к появлению огромного множества композитных оптических материалов, которые в настоящее время разрабатываются в качестве лазеров, сенсоров, дисплеев, фотохромных переключателей и нелинейно-оптических устройств.Эти материалы превосходят композиты с органической матрицей, потому что неорганическая матрица (обычно кремнезем) имеет больший коэффициент пропускания и менее подвержена фотодеградации. Органические молекулы, встроенные в неорганические матрицы, также могут служить шаблонами для создания пористости. Удаление шаблонов термолизом, фотолизом или гидролизом создает поры четко определенных размеров и форм. Неорганические материалы с заданной пористостью в настоящее время представляют интерес для мембран, сенсоров, катализаторов и хроматографии.

Неорганические, металлоорганические и гибридные полимеры и сетки представляют собой потенциально огромный класс материалов с практически неограниченными задачами синтеза и обработки. Предполагается, что будущие исследования продолжат изучение периодической таблицы в поисках новых комбинаций материалов, новых молекулярных структур и улучшенных свойств. Гибридные системы особенно удобны для исследований в области многофункциональных материалов, то есть интеллектуальных материалов, которые одновременно выполняют несколько оптических, химических, электронных или физических функций.Также ожидается разработка гибридных материалов, которые демонстрируют исключительную прочность и вязкость разрушения природных материалов, таких как скорлупа и кость. Замечательная универсальность полифосфазенов и полисилоксанов будет по-прежнему использоваться для биомедицинских приложений, таких как доставка лекарств и замена органов и мягких тканей, а также усовершенствованные эластомеры, покрытия и мембраны.

Будущее прекерамических полимеров и золь-гель-систем кажется светлым. Основной задачей является разработка способов получения чистой стехиометрической неоксидной керамики, особенно SiC, которая демонстрирует прядильность и высокий выход керамики.Новые пути синтеза, такие как подходы к созданию «молекулярных строительных блоков» для многокомпонентной керамики, будут изучены для получения сверхпроводниковых, сегнетоэлектрических, нелинейно-оптических и ионно-проводящих фаз, в основном в форме тонких пленок. Использование золь-гель обработки для получения «индивидуальных» фаз. Пористые материалы для применения в сенсорах, мембранах, катализаторах, адсорбентах и ​​хроматографии являются особенно привлекательной областью исследований и разработок.

ОБРАБОТКА ПОЛИМЕРА

Рост объемов полимеров и их использования, как описано выше, частично связан с простотой их обработки.Вопреки распространенному мнению, пластмассы часто дороже стали, то есть в пересчете на фунт, но они также намного легче стали, стекла или алюминия. Большое преимущество полимеров заключается в том, что их можно обрабатывать многими способами за

ед.

LDPE vs HDPE: свойства, производство и применение

LDPE и HDPE — это термопластические материалы из семейства полиолефинов, которые представляют собой пластмассы на нефтехимической основе, включающие полипропилен (PP) и полиэтилен (PE). Полиэтилен — самый распространенный пластиковый материал в мире, известный своей простой структурой, это самый простой из всех имеющихся в продаже полимеров.

Вместе с классом материалов полиэтилена, LDPE (полиэтилен низкой плотности) и HDPE (полиэтилен высокой плотности) сформировали ландшафт упаковочной и обрабатывающей промышленности. LDPE широко известен тем, что широко используется в пластиковых пакетах, поскольку его низкая плотность делает его легким и гибким, что делает его идеальным для такого рода приложений. HDPE , с другой стороны, тверже и предлагает более высокую прочность и лучшую термостойкость. В последнее время он стал очень популярным в качестве исходного материала для нитей для 3D-печати, используемых вместо материала ABS. Он также используется для производства прочных пластиковых деталей, таких как трубы из полиэтилена высокой плотности, игрушки и пластиковые стулья.

Хотя ПЭВП и ПЭВП являются термопластичными полимерами этилена, они различаются по нескольким свойствам и применению. Один резкий контраст состоит в том, что у ПЭНП больше разветвлений, чем у ПЭНД.Разветвление происходит во время полимеризации, когда полимерные цепи имеют присоединенные к ним вторичные полимерные цепи путем замены атома в первичной цепи мономерной группой. Это ослабляет межмолекулярные силы в полимере. Вот почему у HDPE более высокое отношение прочности к плотности, чем у LDPE с повышенной прочностью на разрыв.

Различные применения LDPE и HDPE основаны на этом фундаментальном структурном различии среди многих других свойств.

Здесь вы узнаете о:

  • Расхождение в свойствах полиэтилена высокой плотности и полиэтилена высокой плотности

  • Преимущества и недостатки использования каждого полиэтиленового материала

  • Как производится и обрабатывается каждый из них

  • Различные применения LDPE и HDPE

Пакеты полиэтиленовые LDPE

Свойства LDPE и HDPE

Хотя оба материала происходят из одного и того же мономера этилена, различие в химической структуре дает широкий спектр уникальных свойств.

Как следует из названия, полиэтилен низкой плотности (LDPE) имеет более низкую плотность, прочность и термостойкость. Между тем полиэтилен высокой плотности (HDPE) отличается более высокой удельной прочностью и термостойкостью.

Таблица 1. Сравнение свойств материалов ПВД и ПНД

Имущество

ПВД

ПНД

Химическая структура

Больше разветвлений

Меньше разветвлений, больше линейность

Плотность

Низкая плотность

0.91-0,94 г / см 3

Высокая плотность

0,95-0,97 г / см 3

Гибкость

Низкая кристалличность (50-60%), поэтому более гибкая

Высокая кристалличность (> 90%), что делает его более жестким и жестким

Термостойкость

Резкое снижение плотности при воздействии температур выше 20 ° C

Выдерживает нагревание до температуры более 100 ° C

Температура плавления

~ 115 ° С

~ 135 ° С

Химическая стойкость

Устойчив к большинству спиртов, кислот и щелочей; низкая стойкость к окислителям и избранным углеводородам

Превосходная стойкость к растворителям, спиртам, кислотам и щелочам; низкая устойчивость к большинству углеводородов

Прочность

Относительно повышенная ударная вязкость в холодных условиях

Высокая прочность на разрыв и удельная прочность

Прозрачность

Высокая, из-за аморфного состояния

Низкая, из-за повышенной степени кристалличности

Максимально допустимое напряжение при 20 ° C

6–17 МПа

14–32 МПа

Плюсы и минусы использования LDPE и HDPE

Хотя оба материала имеют свои преимущества, они также имеют ряд недостатков.Вот список плюсов и минусов каждого из ПВД и ПНД.

Таблица 2. Преимущества и недостатки использования ПЭВД по сравнению с ПЭВП

ПВД

ПНД

Преимущества

Широкое применение

Низкая стоимость

Устойчив к кислотам и щелочам

Простота обработки и формования

Хорошая электроизоляция

Водонепроницаемость

Может обрабатываться как прозрачный

Широкое применение

Низкая стоимость

Высокая прочность на разрыв

Устойчивость к низким температурам

Относительно прочный и жесткий

Водонепроницаемость

Хорошая электроизоляция

Недостатки

Более склонны к растрескиванию

Не используется при очень высоких или низких температурах

Высокая проницаемость для углекислого газа и других газов

Низкая устойчивость к ультрафиолетовому излучению или ее отсутствие

Может растрескиваться под напряжением

Повышенный риск усадки формы

Низкая устойчивость к ультрафиолетовому излучению или ее отсутствие

Производство и переработка ПВД и ПНД

Как производится ПВД?

ПЭНП производится в автоклаве с мешалкой или в трубчатом реакторе.Его обычное производство включает сжатие газообразного этилена, полимеризацию с использованием инициатора и разделение газов.

Как производится HDPE?

Большинство материалов из полиэтилена высокой плотности получают путем суспензионной полимеризации или газофазной полимеризации. Процесс начинается с полимеризации из раствора мономеров этилена с последующим разделением и сушкой.

Как обрабатываются эти два полиэтиленовых материала?

После производства термопластический материал может быть переработан для потребительского или промышленного использования следующими методами:

Литье под давлением

Этот быстрый процесс превращает пеллеты или гранулы ПВД и ПНД в нестандартные формы и размеры, определяемые формой.Гранулы термопласта отправляются в горячий бочонок, из которого материалы расплавляются через бочонок шнека и нагревательные ленты. Затем расплавленный пластик вводится в предварительно сконфигурированную полость формы, которая также охлаждает материал. После затвердевания пластмассовый материал выталкивается из формовочной машины.

Экструзия

Подобно литью под давлением, здесь также используется тепло для плавления пластиковых гранул. Разница проявляется в последней секции машины — в этом случае расплавленный пластик проходит через заранее спроектированное отверстие, а затем охлаждается до затвердевания.

Выдувное формование

Этот вид обработки обычно применяется для производства пластмассовых изделий полой формы. Вместо того, чтобы вдувать расплавленный пластик, в процессе используется сжатый воздух для вдувания материала в форму.

Трубы ПНД

Применение ПВД и ПНД

Применения ПВД включают:
  • Полиэтиленовые пакеты LDPE
  • Легкие упаковочные материалы: кольца для шести упаковок, водонепроницаемая подкладка картонной коробки, полиэтиленовая пленка, защелкивающиеся крышки
  • Бутылки для промывки
  • Антикоррозийный слой для рабочих поверхностей
  • Кожухи и упаковка компьютерной техники

Приложения HDPE включают:
  • Нить HDPE для 3D-принтеров
  • Прочные упаковочные материалы: крышки для бутылок, пластиковые бутылки для молока, бочки, контейнеры для массовых грузов промышленного назначения
  • Волокна для канатов, сетей и промышленных тканей
  • Топливные баки транспортных средств
  • Запчасти для лодок
  • Трубы и трубки из ПНД
  • Стулья и столы из полиэтилена высокой плотности
  • Конструкции детских площадок: горки, качели
  • Потребительские товары: урны для мусора и вторсырья, контейнеры для кубиков льда, игрушки, ящики для льда

Если вам понравилась эта статья, вы также можете прочитать более подробную информацию здесь:

[1] С.Т. Сэм, М.А. Нурадибах, Х. Исмаил, Н.З. Нориман, С. Рагунатан, «Последние достижения в смесях полиолефинов и природных полимеров, используемых для упаковки», Технология и инженерия полимеров и пластмасс , 53: 6, стр. 631-44, 2014.

[2] A. Peacock, Справочник по полиэтилену: структуры, свойства и применение , Нью-Йорк: Marcel Dekker, Inc., 2000.

[3] Совет консультантов и инженеров NIIR, The Complete Technology Book on Plastic Films, HDPE and Thermoset Plastics , India: Asia Pacific Business Press, Inc., 2006.

[4] «Основные характеристики полиэтилена низкой плотности», [онлайн] Доступно по адресу: https://www.plasticsmakeitpossible.com/about-plastics/faqs/professor-plastics/professor-plastics-highlights-of-low-de density -полиэтилен /

[5] Яшода, «Разница между HDPE и LDPE», [Online] Доступно по ссылке: http://pediaa.com/difference-between-hdpe-and-ldpe/, 2016.

[6] Дж. П. Плог, «Обработка полиэтилена», [онлайн] Доступно по адресу: https://www.

Добавить комментарий

Ваш адрес email не будет опубликован.