Из какого материала делают магнит: Из чего делают магниты — блог Мира Магнитов

Содержание

Из чего делают магниты — блог Мира Магнитов

Магниты делятся на несколько видов: постоянные, электро- и временные. Они отличаются между собой характеристиками, долговечностью и особенностью эксплуатации.

Постоянные магниты
Наибольшую популярность получили постоянные магниты — именно их мы подразумеваем, говоря о магнитах вообще. Главная их особенность в том, что они сохраняют свой магнитный заряд на протяжении долгого времени. Как долго и с какой силой прослужит этот элемент, зависит от того, из чего сделан магнит.


Самые мощные магниты — неодимовые


Их изготавливают из разных сплавов металлов:
  • Неодима, бора и железа. Такие элементы называют супермагнитами, поскольку они долго сохраняют эксплуатационные характеристики и размагничиваются со скоростью 1-2% за 100 лет. Размагнитить неодим почти невозможно.
  • Самария и кобальта — за счет устойчивости к агрессивной среде и воздействию высоких температур, активно используется в военной промышленности.
    По своим эксплуатационным особенностям похож на неодимовые аналоги.
  • Альнико — сплав алюминия, кобальта и никеля. Легкий и термоустойчивый материал, но быстро размагничивающийся под действием другого магнитного поля.
  • Магнитопласты — состоят из полимеров, магнитного порошка и всевозможных добавок. В отличие от всех остальных видов, эти магниты легко поддаются обработке, пластичны и эластичны. Благодаря этому из них создают изделия сложной формы и экспериментируют с расположением полюсов. Мощность таких элементов зависит от количества магнитного порошка в составе магнитной смеси, которая может достигать 94% от массы готового изделия.
  • Ферриты — сплав железа с другими металлами. Наиболее распространенный вид, так как недорог в производстве и имеет широкую сферу эксплуатации, однако при воздействии высоких температур довольно быстро теряет свои свойства.

Особую популярность в последнее время приобретают неодимовые магниты, поскольку они в разы превосходят стандартные ферритовые по своим возможностям. Многие интересуются, из чего делают неодимовые магниты, чтобы воспроизвести их в домашних условиях. Но без специального оборудования и знаний это невозможно.
Временные магниты
Еще один интересный вопрос — из чего делают временный магнит. Для этого используют любой металлический предмет. Например, скрепку, ножницы, отвертку и др. Если ненадолго поднести его к источнику мощного магнитного поля или другому сильному магниту, то эта металлическая деталь временно переймет его магнитные свойства. Но выходя из-под действия этого поля, свойства мгновенно теряются. Такие элементы активно используются в электромеханике и автомобилестроении.
Электромагниты
В отличие от постоянных, имеют магнитное поле только при прохождении через них электричества. Такие магниты изготавливают из металлической заготовки. Подойдет любой образец железа или его сплавы, которые хорошо магнитятся — он выступает в роли сердечника. Проверить железный кусок на возможность выступить в роли источника электромагнитного поля просто — используйте стандартный магнитик с холодильника. Если он притягивается к железяке, то она подходит на роль сердечника. Этот брусок обматывают медной проволокой, изолировав предварительно один металл от другого, а потом подключается источник тока. Электромагниты легко сделать самостоятельно, следуя простой инструкции.

Самый простой электромагнит делается за 5 минут из гвоздя, проволоки и батарейки


В отличие от всех остальных видов, электромагниты меняют характеристики под воздействием электрического тока — регулируется мощность устройства, направление полюсов. Его используют в электроустройствах, в моторах и генераторах, в промышленности при транспортировке металлических грузов. А народные умельцы создают множество вариантов самодельных конструкций.

Отличительные особенности неодимовых магнитов — неодимовые и поисковые магниты

Неодимовые магниты NdFeB самые сильные на сегодняшний день постоянные магниты. Изготавливаются они из сплава, содержащего редкоземельный материал неодим Nd, а также железо и бор. Неодимовые магниты имеют очень высокие показатели остаточной магнитной индукции и устойчивости к размагничиванию. По этим показателям они в разы превосходят обычные чёрные, ферритовые, магниты. Что делает их гораздо более привлекательными при использовании в изделиях и оборудовании, где требуются сильное магнитное поле. Единственный серьёзный недостаток этих магнитов — это довольно высокая цена. При чём, с течением времени, она имеет тенденцию к росту, так как потребности мировой промышленности в сильных магнитах так же постоянно растут. Технический прогресс ускорятся год от года, постоянно выходят новые модели смартфонов, телевизоров, компьютеров, навигаторов и тому подобных высокотехнологичных гаджетов, при производстве которых используются редкоземельные металлы. Основным же поставщиком, так сказать лидером глобального рынка, является Китайская Народная Республика, контролирующая до 95% поставок редкоземельных материалов, а соответственно и цены на них. Очередное резкое повышение цен было отмечено летом 2017 года, когда за 3 месяца цена на неодим выросла более чем на 50 процентов.

Технические характеристики неодимовых магнитов

Магнитные характеристики закладываются на стадии изготовления магнита и не могут быть изменены в последствии. Основные же параметры это остаточная магнитная индукция и устойчивость к размагничиванию (коэрцитивная сила). Магнитная индукция измеряется в Теслах (Тс) и Гауссах (Гс), 1 Тл = 10000 Гс. Неодимовые магниты имеют остаточную индукцию порядка 1,2-1,4 Тл (12000-14000 Гс). Следует учитывать, что подобные значения могут быть получены только при испытаниях магнитного материала в замкнутой цепи. При измерении же силы магнитного поля на поверхности магнита тесламетр обычно показывает от 200 до 500 мТл (2000-5000 Гс). К тому же показания остаточной магнитной индукции сильно зависят от формы и размера магнита — чем он больше, тем сильнее будет его магнитное поле. Потери магнитных свойств со временем обычно не превышают 2-3% за 10 лет эксплуатации (естественно, при условии соблюдения температурного режима). Отличительной особенностью неодимовых магнитов является довольно низкая рабочая температура. При сильном нагреве начинается размагничивание материала и чем горячее, тем быстрее протекает этот процесс. Значение температуры, при котором материал начинает терять свои магнитные свойства, называется «точкой Кюри». При этом происходит так называемый «фазовый переход» — быстрое разрушение магнитной структуры вещества. Магниты из обычных марок неодимового сплава, типа N38, N42 и т.п. выдерживают нагрев не выше 80 градусов Цельсия. Это очень ограничивает их применение в оборудовании подверженному сильному нагреву — для нормального функционирования в таких условиях, требуется обеспечить дополнительное охлаждение установки. Существуют и высокотемпературные марки сплавов, такие как N38H (120°С), N38UH (180°C). Если же требуются более высокие рабочие температуры, то следует рассматривать магниты из материала Альнико (ЮНДК) выдерживающие нагрев до 550°C. Неодимовые магниты чаще всего имеют антикоррозионное покрытие, никелевое или цинковое, реже эпоксидное. Магниты могут выпускаться и совсем совсем без покрытия, но так как они имеют свойство ржаветь во влажной среде, то пользуются они гораздо меньшим спросом. Направление магнитного поля может быть аксиальным (вдоль размера h), диаметральным (вдоль размера D) и радиальным (вдоль размера r).

 

Направление намагниченности:

Магнитные характеристики различных неодимовых сплавов

Марка
материала
Остаточная магнитная индукция Br
Коэрцитивная сила
(по току) Hcj
Максимальное энергетическое произведение (BH) max. Рабочая температура t
Tl (Тесла) kG (кГаусс) kA/m kOe MGOe Kj/m3 С
N35 1,17-1,20 11,7-12,0 955 12 35 279 80
N35M 1,17-1,20 11.7-12,0 1115 14 35 279 100
N35H 1,15-1,17 11,5-11,7 1355 17 35 279 120
N35SH 1,17-1,20
11,7-12,0
1590 20 35 279 150
N35UH 1,17-1,20 11,7-12,0 1990 25 35 279 180
N38 1,17-1,20 12,2-12,6 955 12 38 303 80
N38M 1,22-1,26 12,2-12,6 1115 14 38 303 100
N38H 1,22-1,26 12,2-12,6 1355 17 38 303 120
N38SH 1,22-1,26 12,2-12,6 1590 20 38 303 160
N38UH 1,22-1,26 12,2-12,6 1990 25 38 303 180
N40 1,26-1,29 12,6-12,9 955 12 40 318 80
N40M 1,26-1,29 12,6-12,9 1115 14 40 318 100
N40H 1,26-1,29 12,6-12,9 1355 17 40 318 120
N40SH 1,26-1,29 12,6-12,9 1590 20 40 318 160
N40UH 1,26-1,29 12,6-12,9
1990
25 40 318 180
N42 1,30-1,33 13,0-13,3 955 12 42 334 80
N42M 1,30-1,33 13,0-13,3 1115 14 42 334 100
N42H 1,30-1,33 13,0-13,3 1355 17 40 318 120
N42SH 1,3-1,33 13,0-13,3 1590 20 42 334 160
N45 1,33-1,37 13,3-13,7 955 12 45 358 80
N45M 1,33-1,37 13,3-13,7 1115 14 45 358 100
N45H 1,33-1,37 13,3-13,7 1355 17 45 358 120
N48 1,36-1,42 13,6-14,2 955 12 48 382 80
N48M 1,36-1,42 13,6-14,2 1115 14 48 382 100
N48H 1,36-1,42 13,6-14,2 1355 17 48 382 120
N50 1,41-1,45 14,1-14,5 876 11 50 398 70

Применение неодимовых магнитов

Неодимовые магниты получили широкое распространение в различных сферах человеческой деятельности. Благодаря своим высоким эксплуатационным показателям они массово используются при производстве радиоаппаратуры, измерительных приборов, бытовой техники, медицинского оборудования, мобильных телефонов и прочих высокотехнологичных гаджетов. Высоким спросом пользуются эти магниты у производителей ветрогенераторов. Используется неодим и для производства поисковых магнитов, для справки — магнитная рыбалка это интересное, набирающее популярность, хобби. Для обеспечения потребностей потребителей, неодимовые магниты производятся самых различных форм и размеров и способны удовлетворить самый взыскательный спрос. Магниты могут быть изготовлены в форме диска, куба, стержня, цилиндра, призмы, бруска, кольца, сектора или шара. Кроме стандартных геометрических форм, возможно изготовление и более сложных и причудливых конфигураций — свойства материала это позволяют.

Техника безопасности про обращении с неодимовыми магнитами

Основное преимущество неодимовых магнитов это их колоссальная магнитная сила, она же представляет и наибольшую опасность в неумелых или неосторожных руках. Чем больше магнит, тем больший вред здоровью он может причинить. Большие неодимовые магниты при соударении друг о друга способны серьёзно травмировать конечности попавшие в этот момент между ними. Удар будет примерно соответствовать удару кувалды или большого молотка о наковальню. Нужно понимать, что магниты смыкаются со страшной силой и происходит это в одно мгновение. Даже опытный в обращении с магнитами человек не всегда успевает среагировать и отдёрнуть руку в нужный момент. Ещё одна неприятная особенность заключается в том, что если после удара молотком человек получает просто ушиб пальца, то в случае с магнитами, этот палец после удара остаётся зажат между ними как в тисках и вытащить его от туда довольно сложная задача. Если пытаться просто выдернуть палец из магнитов, то с большой долей вероятности они отщипнут кусок кожи с кончика пальца или же сорвут ноготь. Что бы избежать подобных последствий держите большие неодимовые магниты подальше друг от друга и от железных предметов, рекомендуемое расстояние не менее 1 метра. Если это всё же произошло и рука осталась зажата между магнитами, то в первую очередь нужно вставить между магнитами какие нибудь прокладки из немагнитных материалов — пластмассы или дерева, они предотвратят дальнейшее смыкание магнитов. После этого можно попытаться выдернуть руку самостоятельно или дожидаться приезда сотрудников МЧС. Небольшие магниты, размером 20-40 мм., тоже могут представлять опасность и при неаккуратном обращении оставляют на руках ушибы, порезы или гематомы. Очень важно обезопасить детей от контакта с неодимовыми магнитами. Даже маленькие магнитики могут представлять серьёзную угрозу здоровью ребёнка. Проглатывание маленьких магнитов может привести к крайне негативным последствиям, в этом случае нужно безотлагательно вызывать скорую помощь. Держите неодимовые магниты в недоступном для детей месте!
Большие неодимовые магниты создают вокруг себя сильное магнитное поле, во избежание поломок держите их подальше от чувствительной техники — компьютеров, внешних дисков, часов, смартфонов, кардиостимуляторов, навигационного оборудования, банковских карт и т.п. Кроме того неодимовые магниты довольно хрупкие и при сильных ударах могут раскалываться, что тоже неприятно и накладно в денежном отношении. Будьте всегда крайне внимательны и осторожны при обращении с мощными магнитами.

Материалы (экраны) для защиты от магнитных и электромагнитных полей

 

Отрасли применения:

 

  • Электроника.
  • Энергетика.
  • Строительство.
  • Медицина.

 

Области применения:

 

  • Экранирование жилых и нежилых помещений.
  • Экранирование трансформаторных станций.
  • Создание магнитноэкранированных комнат для научно-исследовательских центров.
  • Экранирование силовых кабелей, создание кабель каналов.
  • Экранированные боксы для проведения медико-биологических исследований.
  • Защитная одежда для проведения сварочных работ.

 

 

Назначение:

 

  • Защита электронной аппаратуры, компьютерной техники, прецизионных приборных комплексов и биологических объектов от магнитного поля промышленной частоты и электромагнитного поля радиочастотного диапазона.

 

 

Экраны магнитных полей промышленной частоты

 

 

Описание:

 

Этот вид экранов применяют в том случае, когда необходимо исключить влияние магнитного поля на чувствительные элементы электронной техники, а также на биологические объекты. Принцип защиты заключается в замыкании силовых линий магнитного поля в толще материала и исключение их проникновения из внешнего пространства внутрь замкнутого объема или из замкнутого объема во внешнее пространство.

 

ФГУП «ЦНИИ КМ «Прометей» разработана технология изготовления таких экранов в виде гибких полотен из лент аморфных и нанокристаллических магнитомягких сплавов, прошедших специальную термомагнитную обработку.

 

 

 

Технические характеристики:

 

  • Ширина – от 5 до 50 см;
  • Длина – до 150 м;
  • Толщина одного слоя – от 20 до 30 мкм.
  • Масса 1 м2 в однослойном исполнении – менее 0,3 кг
  • Коэффициент экранирования  в диапазоне частот (50 – 1000 Гц)* – от 10 до 1000.

    *  зависит от напряженности магнитного поля и конструкции экрана.

 

Преимущества

 

  • Имеется санитарно-эпидемиологическое заключение ФГУЗ «Центр гигиены и эпидемиологии в г. С.Петербурге» о том, что экранирующий материал соответствует государственным санитарно эпидемиологическим правилам и нормам.

  • По сравнению с традиционными экранирующими материалами (пермаллои, ферриты и т.п.), эффективность экранирования существенно выше при условии использования одного и того же количества магнитного материала.

  • Разрабатываемые экраны более технологичны и просты в применении за счет малой толщины и гибкости, а также менее чувствительны к механическим напряжениям.

 

Предложения по сотрудничеству:

 

  • Техническая и технологическая документация на технологию изготовления экранов магнитных полей промышленной частоты.
  • Адаптация технологии  под требования Заказчика.
  • Совместная разработка новых типов экранов. Изготовление и поставка продукции.

 

 

Экраны электромагнитных полей

 

 

Описание:

 

 

Подобные экраны применяются в тех случаях, когда для защиты технических средств или биологических объектов необходимо обеспечить отсутствие отраженной электромагнитной волны или высокое ослабление в толщине материала.

 

 

 

 

Экраны выполняются в виде листового металлодиэлектрического композита с наполнителем из порошка аморфного и нанокристаллического магнитомягкого сплава (получение порошка при помощи УДА — технологии).

 

Изготавливаются в виде однослойных или многослойных функционально-градиентных композитов, ячеистых и объемно пористых структур интерференционного типа.

 

Экраны выпускаются, соответственно, в двух модификациях: экранирующего и поглощающего типов.

 

На разработанные материалы выпущены технические условия ТУ 38Л405-365-2004

 

 

 

Технические характеристики:

 

  • Ширина – до 25 см.
  • Длина –  до 25 см.
  • Толщина одного слоя – от 1 до 15 мм.
  • Фракционный состав аморфного порошка – от 3 до 200 мкм.
  • Масса 1 м2 экрана –от 3 до 45 кг.
  • Коэффициент ослабления электромагнитных полей (1 – 1000 МГц) – более 10 дБ/мм.
  • Коэффициент отражения по мощности (1 – 1000 МГц) – менее 10 дБ.

 

 

Преимущества:

 

Существенно более широкий диапазон экранирования и поглощения электромагнитных излучений.

 

 

Правовая защита:  Имеются патенты РФ:

 

  • «Композиционный материал для защиты от электромагнитного излучения»;
  • «Способ получения магнитного и электромагнитного экрана»;
  • « Аморфный сплав для литья микропроводов»;
  • «Силовой кабель с электромагнитным экраном»;
  • «Экранированный бокс с защищенным от внешнего эл.магнитного воздействия внутренним объемом»;
  • «Способ получения композиционного порошкового магнитного материала системы»;
  • «Ферромагнетик-диамагнетик».

 

Предложения по сотрудничеству:

 

  • Техническая и технологическая документация на технологию изготовления экранов электромагнитных полей.
  • Адаптация технологии  под требования Заказчика.
  • Совместная разработка новых типов экранов.
  • Изготовление и поставка продукции.
  • Поставка партий порошков.

 

Форма запроса

Вы можете отправить запрос на данную разработку, заполнив следующую форму:
 

Магнит Фарма — Правовая информация

Правовая информация

Настоящий документ описывает условия доступа и использования сайта обществ Группы компаний Магнит Фарма (данный термин включает в себя АО «СИА ИНТЕРНЕЙШНЛ ЛТД» и аффилированные с ним организации и/или лица), далее «Сайт». Использование Сайта подразумевает полное согласие с настоящими условиями. Настоящий документ описывает условия использования информационных материалов Группы компаний АО «СИА ИНТЕРНЕЙШНЛ ЛТД», ее аффилированных лиц.

1. Данный Сайт, информация, имена, изображения, логотипы и пиктограммы, относящиеся или касающиеся к Группе компаний Магнит Фарма или услуг/товаров, предоставляемых обществами Группы компаний Магнит Фарма, должны использоваться в неизменном виде без изменений, комментариев и гарантий, выраженных или подразумеваемых.

2. Настоящим Пользователь принимает на себя весь риск использования Сайта Группы компаний Магнит Фарма. Ни общества Группы компаний Магнит Фарма, ни их сотрудники не гарантируют отсутствия ошибок или беспрерывного функционирования Сайта Группы компаний Магнит Фарма. Ни общества Группы компаний Магнит Фарма, ни их сотрудники не гарантируют актуальность и/или достоверность указанной на сайте информации — подтверждение в отношении конкретной информации может быть дано исключительно на основании отдельного письменного запроса.

3. Группы компаний Магнит Фарма вправе в любое время полностью или частично изменять информацию на Сайте без предварительного уведомления. Также общества Группы компаний Магнит Фарма не несут ответственности за информацию, полученную, доступную или размещенную вне Сайта Группы компаний Магнит Фарма.

4. Сайт Группы компаний Магнит Фарма содержит материалы, охраняемые авторским правом, товарные знаки и иные охраняемые материалы, включая, но не ограничиваясь, тексты, фотографии, видеоматериалы, графические изображения. При этом все содержание Сайта Группы компаний Магнит Фарма охраняется авторским правом как произведение, созданное коллективным творческим трудом в соответствии с применимым законодательством об авторском праве и смежных правах. Обществам Группы компаний Магнит Фарма принадлежит авторское право как на подбор, расположение, систематизацию и преобразование данных, содержащихся на Сайте Группы компаний Магнит Фарма, так и на сами исходные данные, кроме случаев, специально установленных настоящим Соглашением или отдельно отмеченных в содержании опубликованных на Сайте материалов. Пользователь не имеет права изменять, публиковать, передавать третьим лицам, участвовать в продаже или уступке, создавать производные продукты или иным образом использовать, частично или полностью, содержание Сайта Группы компаний Магнит Фарма. Пользователь может загружать («скачивать») из Сайта Группы компаний Магнит Фарма материалы, охраняемые авторским правом, только для личного использования.

5. Продукты, товары и услуги, упомянутые на Сайте, могут быть доступны только на основании отдельного специального гражданско-правового соглашения.

6. Пользователь обязуется не нарушать режим нормального функционирования Сайта, не посягать на целостность Сайта, не изменять информацию, содержащуюся на Сайте, не препятствовать и не ограничивать доступ на Сайт для других пользователей

7. Все данные, предоставленные Группой компаний Магнит Фарма пользователем Сайта, будут рассматриваться как данные, созданные и распространенные исключительно для информационных целей; никакое договорное обязательство в отношении Группы компаний Магнит Фарма не может возникнуть только на основании данных Сайта.

8. Настоящие условия и любые жалобы, касающиеся использования информации с Сайта будут регулироваться законами Российской Федерации, и стороны признают исключительную юрисдикцию компетентного суда города Москвы, Россия.

Как наносить магнитный гель-лак «Кошачий глаз»?

Маникюр не только придает рукам женщины ухоженный вид и привлекает внимание. Он также отражает индивидуальность и характер его обладательницы. Именно поэтому многие женщины предпочитают покрывать ноготки не просто однотонным гель-лаком, а добавить всевозможные дизайны.

Один из самых простых способов разнообразить и добавить изюминку своему маникюру — использовать магнитный гель-лак с эффектом “Кошачий глаз”. Такие гель-лаки представлены в широкой цветовой палитре, в их нанесении нет ничего сложного, поэтому уже на протяжении нескольких лет “Кошачий глаз” пользуется особой популярностью у представительниц прекрасного пола.

В сегодняшней статье мы разберем в чем же основная особенность гель-лака “Кошачий глаз”, и за счет чего она достигается? Как и с помощью чего его наносить? И возможно ли это сделать в домашних условиях?

Какой гель-лак нужен для «Кошачьего глаза»?

Этот гель-лак получил такое название, так как имитирует эффект камня “Кошачий глаз” (еще одно его название: хризоберилл). Он отличается наличием потрясающего светового блика, перемещающегося по поверхности при просмотре под разными углами. В составе магнитных гель-лаков содержатся мельчайшие металлические частицы. Но одних частиц недостаточно, чтобы добиться такого эффекта. Для этого необходимо использовать специальный магнит, под воздействием которого частички начинают собираться в неповторимый узор.

Кстати, с помощью магнита вы можете создать не только обычную световую полоску, а самые разнообразные рисунки: звезды, волны, сферы и т.д.

НО ЗАПОМНИТЕ! Без специального магнита добиться эффекта “Кошачьего глаза” невозможно!

Всего несколько лет назад при создании эффекта прослеживался блик одного ведущего цвета. Но nail-индустрия не стоит на месте, поэтому производители радуют нас гель-лаками “Кошачий глаз”, в которых сочетаются несколько световых бликов разных оттенков. При воздействии на него магнита мы получаем невероятный эффект хамелеона.


Какой магнит нужен для «Кошачьего глаза»? Виды магнитов

Именно от магнита зависит, какой в конечном итоге на ноготках получится рисунок.

Сегодня на полках магазинов встречаются самые разнообразные варианты магнитов. Среди них можно выделить следующие основные виды:

  1. прямоугольные;
  2. круглые;
  3. магнитные ручки.

Рассмотрим подробнее каждый из видов.

Прямоугольные

С помощью прямоугольного магнита (бруска) можно создать простые, но интересные эффекты:

  • прямая линия, которую можно сделать в любой части ногтя: сбоку, по центру и даже по диагонали. Все зависит от ваших предпочтений;
  • френч: для этого нужно приложить магнит к краю ногтя;
  • обратный френч: в этом случае магнит нужно приложить не к краю ногтя, а к его основанию. В результате мы получим лунку.

Существуют магниты-бруски с узорами, что облегчает создание сложного рисунка.


Однако если у вас нет такого магнита, но есть 2 обычных бруска, то можно легко создать интересные узор, например:

  • зигзаг. Для этого 2 магнита нужно повернуть друг к другу так, чтобы создалось сопротивление и расположить по противоположным краям перпендикулярно ногтю. При таком расположении должен получиться плавный зигзаг;
  • звезда. Для этого наоборот необходимо соединить 2 магнита и место соединения расположить по центру ногтевой пластины.

ОБРАТИТЕ ВНИМАНИЕ! Существуют магниты с ручкой и без нее. Для новичков более удобным является вариант с ручкой!

Круглые

С помощью круглого магнита можно создать не только кружок, но и более плавные линии.

Кстати, существуют магниты 2 в 1: на одном конце располагается прямоугольный магнит, а на другом — круглый.


Магнитные ручки

С помощью магнитных ручек можно создать тонкие и аккуратные линии. Ручку необходимо держать перпендикулярно ногтевой пластине и работать ей медленно, чтобы рисунок получился четким. Такие ручки бывают точечными, с несколькими точками на конце и даже шариком.

Магнитной ручкой можно создать массу интересных рисунков, например цветочные мотивы. Для этого нужно рисовать ручкой круглые спирали в разных частях ногтя. В результате мы получим рисунки, похожие на розы. А с помощью магнитной ручки с шариками на конце можно создать такие сложные узоры, как, например, «змеиная кожа».


Как делать маникюр «Кошачий глаз»?

Перед тем, как наносить магнитный гель-лак стоит потратить немного времени и сделать маникюр: обработать кутикулу, придать ноготкам аккуратную форму.

После маникюра можно приступать к подготовке ногтевой пластины к покрытию и, собственно, самому покрытию.

Какие материалы понадобятся?

Как наносить гель-лак? Пошаговая техника

  1. Обрабатываем бафиком поверхность ногтевой пластины, чтобы приподнять чешуйки ногтевой пластины и улучшить сцепку.
  2. Удаляем пыль специальной щеточкой.
  3. Наносим на безворсовую салфетку обезжириватель и протираем ногти.
  4. Если вы являетесь обладательницей жирной или влажной ногтевой пластины, то наносим на всю поверхность ногтя дегидратор и сушим на воздухе в течение минуты. Затем необходимо нанести на свободный край (кончик) ногтя праймер. Свободный край является одним из самых уязвимых мест, а благодаря праймеру улучшается сцепка между ногтевой пластиной и искусственным материалом, что способствует более длительной носке покрытия. Праймер также сушим на воздухе в течение одной минуты.

  5. Наносим на поверхность ногтя базовое покрытие. Сушим в лампе. Липкий слой не снимаем.
  6. Теперь переходим к самому интересному этапу — нанесению гель-лака “Кошачий глаз”.

    СОВЕТ: по желанию в качестве подложки под “Кошачий глаз” можно черный (или темный) гель-лак. Так узор будет более выраженным и четким. Слой темного гель-лака необходимо просушить в лампе.

  7. Наносим слой гель-лака.
  8. Подносим магнит, как можно ближе к ногтевой пластине. Создаем желаемый рисунок.
  9. СОВЕТ: металлические частички, содержащиеся в магнитном гель-лаке, со временем могу осесть на дно флакона. Для того, чтобы их “разбудить”, перед применением необходимо встряхнуть флакон с помощью перекатывания в ладонях. О том, почему нельзя трясти гель-лак мы разбирали в статье “Как выбрать гель-лак для домашнего использования?”.

  10. Сушим гель-лак в лампе. Липкий слой не снимаем.
  11. Наносим топовое покрытие. Сушим в лампе.
  12. Если используется топ с липким слоем, то смачиваем безворсовую салфетку средством для удаления липкого слоя и протираем ей ногти.

Вот еще несколько профессиональных тонкостей по использованию магнитного гель-лака:

  • не храните магнит слишком близко к флакончику с гель-лаком — металлические частички могут размагнититься;
  • если рисунок получился не таким, как вы задумывали — не расстраивайтесь! Его можно сразу изменить магнитом по непросушенному покрытию. После полимеризации в лампе изменить рисунок будет невозможно;
  • магнит нужно держать как можно ближе к покрытию, на расстоянии 2-5 миллиметров от ногтевой пластины. Но будьте внимательны! Если поднести магнит ближе, то можно задеть покрытие и повредить его;
  • чтобы получить качественный результат — не торопитесь, работайте с каждым ноготком по очереди;
  • попробуйте прикладывать магнит по вертикали, горизонтали и диагонали. Каждый раз будет получаться разный вариант. С опытом вы сможете создавать очень интересные узоры.

Что нельзя делать после нанесения гель-лака?

Чтобы покрытие носилось в течение всего положенного срока без сколов и отслоек, необходимо соблюдать некоторые правила:

  • в течение первых суток после нанесения гель-лака избегать длительных водных процедур. Например, принятия горячей ванны или посещения бассейна. Также в течение первых суток необходимо воздержаться от парафинотерапии и посещения сауны, бани;
  • нельзя ковырять ногтевую пластину;
  • необходимо избегать механических повреждений: стучать ногтями, открывать ими банки и т.д.;
  • домашние работы с химикатами или моющими средствами необходимо выполнять в хозяйственных перчатках, так как агрессивные компоненты в составе этих средств могут испортить покрытие. Кстати, именно это правило поможет не только сохранить маникюр, но и красоту и молодость кожи рук.

Чем еще можно создать эффект “Кошачий глаз”?

Такой эффект можно создать не только с помощью специального гель-лака. Можно воспользоваться пигментами “Кошачий глаз”.


Такой вариант помогает разнообразить дизайны с гель-лаками, которые уже у вас имеются. С помощью пигмента и магнита вы можете в любой момент дополнить их потрясающим эффектом и придать маникюру особую изюминку.

Как пользоваться пигментом?

Для этого необходимо смешать его с небольшим количеством гель-лака, гель-краски или топа, а затем нанести как обычный гель-лак “Кошачий глаз” на ногтевую пластину.

Опытные мастера наносят пигмент “Кошачий глаз” сразу на непросушенный слой гель-лака на ногтевой пластине, перемешивают его тонкой кисточкой, а затем создают магнитом нужный узор. Такой вариант экономит время и позволяет сочетать несколько вариантов пигментов в разных частях ногтевой пластины.

Благодаря гель-лакам и пигментам с эффектом “Кошачий глаз” и фантазии получается маникюр с интересным дизайном! Не бойтесь экспериментов! Создавайте неповторимые узоры и показывайте свою индивидуальность!

Виды звукоснимателей для электрогитар и правила выбора датчиков

Если ты читаешь эту статью, значит, ты созрел для замены звукоснимателей. Да, твое дерево звучит хорошо. Мы уверены, что ты уже послушал его в неподключенном состоянии. Если хочется обновить звучание гитары, то давай разбираться, какие бывают звукосниматели и как не ошибиться с выбором.

Виды звукоснимателей

Начнем с простого: датчики делятся на активные и пассивные. Основным отличием является то, что пассивный звукосниматель имеет больше витков в катушках, а значит, воспринимает больший диапазон частот. Мощность звукоснимателя зависит от количества обмотки, но сам звук при этом становится мягче. Чтобы добавить мощности и сделать звук жестче, были созданы активные звукосниматели.

Активными считаются те, которые содержат в себе дифференциальный усилитель сигнала. Есть мнение, что любой буфер, бустер или предусилитель делает его активным, но это не так. Нужно специальный усилитель встраивать прямо в датчик, а все расчеты должны быть идеально точными.

Еще можно классифицировать звукосниматели по характеру обмотки и типу магнита.

Виды датчиков по характеру обмотки: синглы, хамбакеры

Сингл (Single-coil) – назван по количеству катушек, а точнее – всего одной. Максимально чисто передают звук, но довольно тихие и ловят много электромагнитных помех.

или (прим. для дизайнера: на картинке убрать лого)

Хамбакер (Humbucker) – двухкатушечный звукосниматель. Использует принцип шумоподавления. Катушки в нем последовательно подключены в противофазе. Из-за особенностей устройства датчика высокие частоты звучат менее выражено, чем на сингле, но позволяют избавиться от посторонних шумов.

Хамканселлер (Humcanceller) – двухкатушечный звукосниматель, в котором катушки находятся не рядом, а друг над другом. Имеет практически звук сингла, но без постороннего фона. Полезный сигнал не искажается.

В рельсовых хамбакерах вместо магнитопровода находятся так называемые рельсы, и это помогает исключить провалы громкости.

Виды датчиков по типу магнита

Магниты чаще всего делают из одного и того же материала – это сплав альнико (алюминий, никель, кобальт). В зависимости от их соотношения меняется и звук.

Если говорить о том, как сплав влияет на атаку и звучание, то большинство гитаристов выбирают альнико 5. Хотя существуют и другие варианты:

  • альнико 2 – магнит, который дает винтажный звук, Слэш играет на таких датчиках;
  • альнико 3 – самый маломощный магнит с большой чувствительностью;
  • альнико 8 – один из самых интересных вариантов для поклонников тяжелой музыки.

Также существуют и керамические датчики. Такие звукосниматели выдают мощный звук с обилием верха. Но некоторые гитаристы отмечают у них перекомпрессированный звук.

С чего начать выбор звукоснимателя

Представим, что ты уже знаешь, что тебе нужно заменить: активный звукосниматель или пассивный, хамбакер или сингл. Теперь внимательно изучи свой инструмент: породу дерева, тембральную особенность гитары. Определись, какую музыку ты будешь играть. Только после этого можно подбирать тембр датчика.

Если нет опыта, не советуем экспериментировать: для первой замены датчиков выбирай классические сочетания.

Связь звукоснимателя и материала гитары

Этот вопрос – один из самых горячих в теме звукоснимателей. Музыканты разбились на два лагеря: кто-то считает, что качественные звукосниматели спасут даже откровенно плохой инструмент, другие считают это невозможным.

На самом деле, многое зависит от инструмента: если быть откровенным, то лопата (в прямом смысле) не зазвучит как хороший инструмент, даже если на нее поставить самые качественные звучки.

Конечно, некоторая связь между материалом и выбором звукоснимателя есть, а именно:

  • дерево задает основной характер звучания нот и их затухания;
  • на атаку влияет то, из какого дерева изготовлена накладка на гриф.

В заключение

Имей в виду, что звучание датчика связано еще и с его расположением на деке гитары, так как колебания струны на различных ее участках неодинаковы. Это можно заметить в изменении тембра, громкости и количества обертонов. Когда звукосниматель ближе расположен к нижнему порожку, то звучание гитары будет более звонкое и яркое, а вот когда дальше – звучание мягкое. Сами звукосниматели бывают бриджевыми и нековыми, расположенными на грифе.

Прежде чем менять звукосниматели на гитаре, подумай несколько раз, действительно ли это тебе нужно. Даже замена струн всегда дает значительные изменения. Поэтому перед таким кардинальным решением попробуй сменить именно струны – это обойдется намного дешевле и проще.

И вообще, старайся придерживаться простой арифметики: стоимость датчиков не должна быть больше или равна стоимости гитары. В этом случае проще купить новый инструмент. Успехов!

Создание вечного двигателя на неодимовых магнитах

Создание вечного двигателя на неодимовых магнитах

Неодимовый магнит — мощный постоянный магнит, состоящий из сплава редкоземельного элемента неодима, бора и железа.

Кто из нас в детстве не пытался или хотя бы не размышлял о том, чтобы построить вечный двигатель на постоянных магнитах? Казалось бы, если магниты отталкиваются друг от друга одноименными полюсами, то, наверное, можно найти такую конфигурацию магнитов, когда отталкивание станет действовать непрерывно, и сможет, например, вращать ротор «вечного» двигателя.

Однако, стоило нам попробовать реализовать эту идею практически, как тут же выяснялось, что в реальности ротор все равно находит такое положение, в котором останавливается. Словно ротор и вращался лишь для того, чтобы в конце концов найти эту точку и остановиться в ней. То есть неизбежно наступало устойчивое равновесие ротора.

Стремление термодинамических систем к равновесию

И это вовсе не удивительно, ведь ученым давно известно, что термодинамические системы стремятся к равновесию, и в конце концов пребывают в устойчивом равновесии (статическом или динамическом).

Из механики мы знаем, что тело покоится либо движется равномерно и прямолинейно, если на него не действуют никакие внешние силы, либо если действие этих внешних сил на тело скомпенсировано, то есть суммарная сила равна нулю (результирующее внешнее воздействие отсутствует).

Как вы понимаете, принцип стремления термодинамических систем к равновесию относится и к чисто механическим системам. Так, если система изначально пребывает в устойчивом равновесии (и конструкция с постоянными неодимовыми магнитами не является исключением), то при воздействии на такую конструкцию внешнего фактора, выводящего систему из равновесия, неизбежно возникнет реакция со стороны данной системы.

Это значит, что в системе начнут усиливаться процессы, стремящиеся уменьшить влияние внешнего фактора, который систему из равновесия вывел (Принцип Ле Шателье — Брауна).

Модель магнитного генератора индийского блогера с канала Creative Think:

Чтобы вызвать стремление к равновесию, необходимо создать условия не равновесия

Известный пример из электродинамики — правило Ленца. Если бы правило Ленца не работало, то электродвигатели не могли бы функционировать.

В электродвигателе электрический ток создает магнитное поле, которое заставляют ротор непрерывно искать равновесие, и чтобы ротор не останавливался, магнитное поле все время действует таким образом, что вынуждает ротор (даже под механической нагрузкой) постоянно догонять точку, в которой должно будет наступить равновесие.

Но при этом электрическим полем, действующим в проводниках, совершается работа, то есть расходуется энергия источника, ведь в двигателе есть как минимум трение вала о подшипники, на преодоление которого, даже если ротор не нагружен и двигатель работает вхолостую, требуется работа, то есть расход энергии.

Если бы трения (даже о воздух) не было, и вал не был бы нагружен, то ротор бы вращался очень долго, например в полном вакууме в отсутствие силы притяжения к Земле. Но тогда никакая работа этим ротором бы уже не совершалась, и это был бы уже не двигатель, а вращающийся без сопротивления кусок металла.

Вернемся теперь к постоянным магнитам. Для системы с постоянными магнитами предсказать направление протекания процесса уравновешивающей реакции несложно.

Так, еще в 90-е годы японский экспериментатор Кохеи Минато исследовал возможность создания непрерывного вращения используя постоянные магниты на роторе и статоре своего мотора. В конце концов он был вынужден также создавать изменяющееся магнитное поле, которое заставляло бы ротор искать равновесие.

Минато демонстрировал, как приближая или отдаляя постоянный магнит, можно вынудить ротор с постоянными магнитами вращаться. Но в итоге он просто дошел в экспериментах до двигателя с постоянными магнитами на роторе.

Никакого вечного двигателя не получилось. На изменение внешнего магнитного поля, от которого бы отталкивался ротор с магнитами, требуется энергия извне. То есть, для создания условий, в которых ротор с магнитами будет искать равновесие, необходимо параллельно совершать работу.

Еще одна модель магнитного генератора с Интернета:

Динамическое равновесие при низкотемпературной сверхпроводимости как частный случай

Рассмотрим крайний случай. Многие знают, что свинцовая катушка с током, помещенная в жидкий гелий, способна поддерживать ток (и магнитное поле тока) на протяжении многих лет, поскольку сопротивление проводника исчезает.

Почему сопротивление исчезает? Потому что колебания атомов в металле, обуславливающие электрическое сопротивление металла, прекращаются при критической температуре. Две такие катушки будут вести себя по отношению друг к другу как постоянные магниты. Но опять же, они найдут устойчивое равновесие и остановятся.

Движения под действием силы не будет, то есть двигателя совершающего работу не получится. Движущиеся в сверхпроводнике электроны также работы не совершают, хотя и пребывают в устойчивом динамическом равновесии.

Чтобы двигатель совершал работу — он обязан расходовать энергию, но откуда ей взяться?

Допустим, что двигатель на постоянных магнитах реально возможен. Тогда для совершения механической работы, то есть на перемещение какого-нибудь объекта под действием силы со стороны вала такого двигателя (даже на преодоление силы трения при вращении ротора вхолостую), необходимо преобразование некой энергии внутри двигателя.

А что это за энергия, если не энергия постоянных магнитов или не энергия подводимая извне? Раз по условию задачи энергия извне не подводится, значит остается энергия постоянных магнитов.

Однако, будучи просто расположены на роторе и статоре, магниты энергию не отдадут. Чтобы заставить магнит размагничиваться, необходимо совершить работу, то есть опять же подвести к устройству энергию извне. Остается делать выводы…

Ранее ЭлектроВести писали, что французский автопроизводитель Citroen официально представил обновленный кросс-хэтчбек C4, включая его электрическую версию Citroen ë-C4. Покупатель сможет выбрать бензиновый двигатель мощностью 100-155 л.с., дизельный двигатель мощностью 110-130 л.с. или электрическую установку мощностью 100 кВт (136 л.с.).

По материалам: electrik.info.

Какие магниты сделаны из

[/ caption]

Магниты — незамеченные герои Нового времени. Однако большинство людей не понимают, из чего сделаны магниты и как они вообще работают. Проблема в том, что мы просто знаем, что магниты притягивают железо и никель. Однако магниты имеют очень интересное происхождение и могут рассматриваться как физическое проявление электромагнитной силы.

Все магниты изготовлены из группы металлов, называемых ферромагнитными металлами. Это такие металлы, как никель и железо.Каждый из этих металлов обладает особым свойством однородного намагничивания. Когда мы спрашиваем, как работает магнит, мы просто спрашиваем, как объект, который мы называем магнитом, проявляет свое магнитное поле. Ответ на самом деле довольно интересный.

В каждом материале есть несколько небольших магнитных полей, называемых доменами. В большинстве случаев эти домены независимы друг от друга и обращены в разные стороны. Однако сильное магнитное поле может расположить домены любого ферромагнитного металла так, чтобы они выровнялись, чтобы создать большее и более сильное магнитное поле.Так делают большинство магнитов.

Основное различие между магнитами заключается в том, являются они постоянными или временными. Временные магниты со временем теряют свое большее магнитное поле, поскольку домены возвращаются в исходное положение. Самый распространенный способ производства магнитов — нагрев их до температуры Кюри или выше. Температура Кюри — это температура, при которой ферромагнитные металлы приобретают магнитные свойства. Нагревание ферромагнитного материала до заданной температуры на некоторое время сделает его магнитным.Нагревание выше этой точки может сделать магнетизм постоянным. Ферромагнитные материалы также можно разделить на мягкие и твердые металлы. Мягкие металлы со временем теряют свое магнитное поле после намагничивания, в то время как твердые металлы могут стать постоянными магнитами.

Не все магниты созданы руками человека. Некоторые магниты встречаются в природе, например, магнитный камень. Этот минерал использовался в древности для изготовления первых компасов. Однако у магнитов есть и другое применение. С открытием связи между магнетизмом и электричеством магниты теперь являются основной частью каждого электрического двигателя и турбины.Магниты также использовались для хранения компьютерных данных. Теперь существует тип накопителя, называемый твердотельным накопителем, который позволяет более эффективно сохранять данные на компьютерах.

Мы написали много статей о магнитах для Universe Today. Вот статья о магнитном поле Земли, а вот статья о стержневом магните.

Если вам нужна дополнительная информация о магнитах, ознакомьтесь с дискуссией НАСА о магнитах, а здесь — ссылка на статью о магнитных полях.

Мы также записали целый эпизод Astronomy Cast, посвященный магнетизму.Послушайте, Серия 42: Магнетизм повсюду.

Источники:
НАСА
Википедия

Как это:

Нравится Загрузка …

Как сделаны магниты и из чего они сделаны?

Итак, мы установили, что магниты потрясающие. Их используют во всем, от автомобильных двигателей до компьютеров. И, конечно же, они держат ваш последний табель успеваемости с отметкой «отлично» или художественный шедевр в холодильнике вашей семьи. Мы также рассмотрели , как работают магниты, , , что такое магнитное поле, и , как определить, какой полюс какой .Но как они сделаны и из чего они сделаны? Что В магните?

Ну, это зависит от того, говорите ли вы о естественном магните или искусственном магните. Ага, в природе действительно есть магнит! Магнитный камень, естественно намагниченный кусок магнетита, притягивает железо, поэтому технически это магнит. В нашем блоге есть забавная история о древних открытиях и использовании магнетита и магнитного камня.

Остальные магниты, которые мы видим сегодня, созданы руками человека.Существует группа материалов, известная как ферромагнитные материалы . В эту группу входят железо, кобальт, никель и некоторые сплавы редкоземельных элементов (в основном неодим и самарий). Эти ферромагнитные материалы можно сделать магнитными, подвергая их воздействию магнитного поля с помощью электрического тока. Используя намагничивающее приспособление, которое направляет ток через немагниченную часть, электроны в этих металлах выстраиваются в линию или поляризуются, делая материал магнитным. Вы можете узнать больше о процессе поляризации здесь.

Некоторые искусственные магниты сохраняют свои магнитные свойства навсегда *. Они обозначаются как постоянные магниты . Некоторые из них будут магнитными только при наличии внешнего магнитного поля, например, от постоянного магнита. Эти «временные» магниты называются мягкими магнитами .

* Постоянные магниты могут потерять свой сильный магнетизм при нагревании до температуры Кюри .Нагрев постоянного магнита до температуры Кюри заставляет выровненные электроны раскручиваться со смещением, уменьшая магнетизм объекта. Как только температура объекта снизится, его можно повторно намагнитить тем же способом, который описан выше. Проверьте температуру Кюри для веществ, перечисленных ниже:

Другой тип искусственного магнита — электромагнит. Электромагниты создаются, когда электрический ток проходит через катушку с проволокой.Катушка является магнитной до тех пор, пока на нее подается электрический ток. Но отключите электричество, и вы отключите и магнетизм.

Хотя для создания большинства искусственных магнитов вам понадобится узкоспециализированное оборудование, вы можете создать свой собственный простой электромагнит или проводить углубленные проекты в области электромагнита дома или в школе!

Теги: кобальт, содержание магнита, температура Кюри, электромагниты, ферромагнетики, железо, магнитный камень, магнитные материалы, магнитные материалы, магнитные металлы, магниты, искусственные магниты, природные магниты, никель, сталь

Поделиться:

постоянных магнитов | Изготовленные на заказ магниты и магнитные сборки

Пользовательские постоянные магниты для высокопроизводительных приложений

Постоянные магниты изготавливаются из специальных сплавов (ферромагнитных материалов), таких как железо, никель и кобальт, нескольких сплавов редкоземельных металлов и минералов, таких как магнит.В отличие от электромагнитов, постоянные магниты создают постоянное магнитное поле без необходимости в каком-либо внешнем источнике магнетизма или электроэнергии.

Обладая более чем 60-летним опытом в области технических магнитов, Integrated Magnetics специализируется на разработке, проектировании и производстве нестандартных постоянных магнитов и прецизионных магнитных узлов для высокопроизводительных приложений. Из нашей штаб-квартиры в Калвер-Сити, штат Калифорния, и наших собственных производственных мощностей по всему миру, мы производим комплексные магнитные решения под ключ для различных рынков по всему миру.Специализированные отрасли, с которыми мы работаем, включают военную, аэрокосмическую, энергетическую, полупроводниковую, НИОКР, автомобилестроение, промышленную автоматизацию и другие.


Ваш индивидуальный проект с постоянным магнитом — чем мы можем помочь?

Отправьте нам запрос цен или свяжитесь с нами сегодня, чтобы обсудить требования вашего проекта, и наша опытная команда инженеров поможет вам определить наиболее экономичный способ предоставления вам решения. Мы также предлагаем широкий выбор постоянных магнитов для онлайн-покупки в MagnetShop.com.

Запросить цену Свяжитесь с нами

Материалы для постоянных магнитов

Мы производим наши магниты на заказ с использованием лицензированных высококачественных магнитных материалов различных премиальных и стандартных марок, включая:

Мы храним большинство магнитных материалов, которые легко доступны в готовом виде для линий с ускоренным производством. Кроме того, у нас есть стандартные сорта стали, алюминия и инконеля для производства магнитных узлов и компонентов. Специальные материалы доступны по запросу.Также доступны спецификации для конкретных материалов магнитов, которые вас интересуют.


Постоянные магниты — изготовление на заказ по вашему чертежу или спецификациям

Небольшие партии нестандартных магнитов могут быть изготовлены из сырья, которое мы храним на собственном складе, а время выполнения работ для критичных по времени проектов может составлять всего две недели. Мы производим на заказ магниты самых разных форм и конфигураций, со специальными функциями для удовлетворения ваших требований к применению и производительности, включая:

  • Прямоугольники, дуги, диски, кольца или сложные формы.
  • Магнитная ориентация на указанный угол.
  • Специальные покрытия
  • Термостабилизация
  • Данные по мере необходимости (размерный и магнитный контроль, отслеживание материалов)

Внутренние возможности и системы управления качеством

Используя наши глобальные производственные, производственные и испытательные центры, мы предлагаем широкий спектр индивидуальных возможностей, включая:

  • Собственная оснастка, обработка, шлифование, электроэрозионная обработка, сборочные цеха, чистые помещения и многое другое.
  • Внутренний контроль времени выполнения заказа для доставки индивидуальных магнитных решений в срок и в соответствии со спецификациями.
  • Мы сертифицированы по ISO 9001: 2015, зарегистрированы в DDTC, соответствуют требованиям ITAR и ROHS 3 . При поддержке команды опытных инженеров по проектированию, применению и производству у нас есть хорошо отлаженная система менеджмента качества, отвечающая важнейшим современным стандартам.

Contact Integrated Magnetics Today

Свяжитесь с нами, чтобы обсудить специальные требования вашего проекта, мы здесь, чтобы помочь и будем рады получить от вас известие!

Магнитные решения под ключ

От стандартных магнитов до сложных магнитных узлов и электрических машин, мы — вертикально интегрированная компания, предоставляющая готовые магнитные решения под ключ практически для любого типа магнитного поля .

Машиностроение и производство

Инжиниринг лежит в основе нашего бизнеса. Мы обладаем уникальной квалификацией во всех аспектах технической инженерии и предоставляем магнитные решения, оптимизированные по функциональности, срокам поставки, стоимости и надежности.

Системы менеджмента качества

IS0 9000 Сертифицированный с 1998 года, у нас есть хорошо отлаженная система менеджмента качества, соответствующая важнейшим стандартам сегодняшнего дня. Мы создаем сборки с многоуровневыми ведомостями материалов, а наши ERP, планирование и QMS поддерживают эти действия.

Введение в магниты | Монро

Магниты могут быть натуральными и искусственными. Природные магниты находятся в земле и богаты минералом железа, называемым магнетитом. Искусственные магниты разрабатываются в лаборатории путем обработки металлических сплавов для выравнивания заряда.

Существует четыре основных типа магнитов:

  • Постоянные магниты
  • Временные магниты
  • Электромагниты
  • Сверхпроводники

В четырех различных типах магнитов также есть разные типы магнитов.

Постоянные магниты используются в быту. После намагничивания постоянные магниты в определенной степени сохраняют свой магнетизм. Магниты состоят из различных атомов и молекул, которые являются ферромагнитным материалом. Эти атомы и молекулы обладают магнитным полем, которое позволяет им усиливать друг друга. Никель, кобальт, сталь и железо — это некоторые из ферромагнитных материалов, которые обладают сильными магнитными свойствами.

Постоянные магниты различаются по силе.Некоторые из них очень трудно размагнитить, но все же могут быть повреждены. Магнитное притяжение атомов может быть нарушено, если другие магниты и магнитный материал находятся в непосредственной близости. Экстремальные погодные условия с максимумами и минимумами также могут размагнитить магниты. Несмотря на то, что они выглядят солидно, очень важно обращаться с ними осторожно. Падение, удары, сотрясение и применение силы к магниту также могут размагнитить материал.

Постоянные магниты бывают разных форм и размеров, и им можно придавать различные формы.Они также могут быть гибкими, различной толщины и длины. Гибкие магнитные полоски или листы изготовлены из ферромагнитного порошка, смешанного с полимерным связующим. Эти высокоэнергетические полоски устойчивы к размагничиванию, не трескаются, не раскалываются и не раскалываются. Гибкий магнитный материал может быть намагничен двумя или более полюсами по длине грани, создавая концентрированную силу на поверхности магнита.

Есть 4 основных типа или подкатегории постоянных магнитов.

Неодим, железо, бор, магниты — это редкоземельный магнитный материал. Эти магниты известны под несколькими разными названиями. Его можно увидеть как NdFeB, потому что он сделан из сплава трех различных материалов. Nd — это символ химического элемента неодима, Fe — символ химического элемента железа, а B — символ химического элемента бора. NIB и Neo — это просто аббревиатуры, NIB означает неодим, железо, бор, а Neo — просто сокращение для неодима.

Эти магниты являются высокоэнергетическими и очень сильными магнитами, которые трудно размагнитить. Они могут быть очень компактными и небольшими по размеру, поскольку обладают высоким уровнем энергии. Неомагниты хрупкие и коррозионные, потому что неодим реагирует на кислород и окисляется, если его не обработать. Вот почему необходимо защитное покрытие. Покрытие настолько тонкое, что не оказывает значительного влияния на силу магнита.

Неодимовые магниты используются в самых разных областях.От компьютерных жестких дисков и наушников до промышленных приложений, таких как генераторы, двигатели и ветряные турбины. Несмотря на то, что они очень прочные, легкие и доступные, они сделаны на основе неодима, поэтому при воздействии низких температур они могут потерять свой магнетизм.

Чтобы узнать больше об этих магнитах, загляните в нашу неодимовую направляющую .

Самарий Кобальт или SmCo, что означает его химические элементы, также относятся к семейству редкоземельных магнитов. По силе они очень похожи на неомагниты, но неомагнит сильнее.Есть две разные серии магнитов SmCo, которые основаны на диапазоне энергии продукта. Первый — это Sm1Co5 или Series 1: 5, а второй — Sm2Co17 или Series 2:17. Sm1Co5 имеет диапазон энергетических продуктов от 15 до 22 MGOe, а Sm2Co17 имеет диапазон энергетических продуктов от 22 до 32 MGOe.

Большая разница, и в зависимости от марки в них мало железа или вообще нет, что означает, что они очень устойчивы к коррозии, в отличие от нео-магнитов, на которые обычно наносится покрытие. Другое большое отличие состоит в том, что они могут сохранять свои магнитные свойства в гораздо большем диапазоне температур.Это означает, что при высоких и низких температурах они очень устойчивы к размагничиванию. Несмотря на то, что они устойчивы к коррозии, они хрупкие и легко раскалываются.

Устойчивость к температуре и коррозии делает самариево-кобальтовые магниты идеальным выбором для приложений, которые работают в условиях высоких температур и влажности, таких как двигатели и датчики, и часто используются в автомобильной, морской, аэрокосмической и медицинской промышленности.

Alnico изготовлен из сплавов алюминия, никеля и кобальта.Фактически, он получил свое название от первых двух букв каждого из сплавов. В отличие от двух других редкоземельных магнитов, Alnico можно легко размагнитить при неправильном обращении. Хотя они обладают хорошим диапазоном температурной стабильности и высокой энергии, во многих случаях их заменяют на редкоземельные магниты или керамику.

Магниты Alnico производятся двумя разными способами. Один из них отлит из Alnico, и это позволяет придавать материалу магнита множество различных форм.Литье также дает продукт с более высокой энергией, который часто используется в измерительных устройствах, измерителях и многих других инструментах. Спекание Alnicos делает магниты более прочными механическими характеристиками, но отрицательные — это снижает их магнетизм.

Чтобы узнать больше о магнитах Alnico, загляните в нашу направляющую для магнитов Alnico .

Керамические магниты также называют ферритовыми магнитами. Керамический магнит представляет собой неметаллическое соединение чистых сортов оксида железа и карбоната стронция, а также небольших количеств оксидов других металлов.Эти магниты очень хрупкие, легко ломаются и трескаются. Хотя они имеют более низкий уровень энергии, они имеют довольно хороший баланс магнитных сил и их нелегко размагнитить. Сегодня это одни из самых используемых магнитов.

Эти магниты можно изготовить двумя способами: спеканием или прессованием. Компаунд прокаливают, измельчают в шаровой мельнице до мелкого размера, добавляют связующие, затем смесь уплотняют в прессе. Прессованные формы обжигаются при высоких температурах в печах с строго контролируемым температурным циклом.После охлаждения детали алмазно распиливаются и алмазный круг шлифуется в соответствии со спецификациями.

Чтобы узнать больше о керамических магнитах, загляните в нашу направляющую для керамических магнитов .

Временные магниты — это именно то, что подразумевает их название, временные. Материал, в основном мягкое железо или железные сплавы, работает как магнит только тогда, когда они находятся в присутствии сильного магнитного поля. Как только они больше не находятся в магнитном поле, они теряют свою магнитную силу.Примером временного магнита могут служить гвозди. Когда они соприкасаются с магнитом для чистки ногтей, их магнитная сила входит в зацепление, и они цепляются за щетку для ногтей. Как только они снимаются с щетки для ногтей, они теряют свою магнитную силу.

Электромагниты должны пропускать через них электричество, чтобы они стали магнитными. Сила этих магнитов зависит от силы электрического тока, проходящего через них. Принцип его работы заключается в том, что провод плотно наматывается в катушку, часто с железным сердечником, и когда электрический ток проходит через катушку, он намагничивается и действует как постоянный магнит.Как только ток пропал, магнетизм исчезнет. В динамиках, компьютерах, радио и даже телевизорах используются электромагниты.

Сверхпроводники также состоят из катушки с проволокой, подобной электромагнитам. В отличие от электромагнитов, специальные металлические сплавы, из которых сделаны катушки, не имеют металлического сердечника. Это самые сильные магниты из всех. Они создают чрезвычайно сильное магнитное поле, но их провода необходимо охладить до определенной температуры, чтобы специальные металлические сплавы стали сверхпроводниками.Эти магниты практически не потребляют энергии, потому что энергия нужна только для оборудования, которое охлаждает катушки. Они используются в аппаратах МРТ, ускорителях частиц и масс-спектрометрах.

Вы ищете

магнитов ?

Отправьте запрос предложения сейчас!

Из чего сделаны магниты?

Обновлено 14 декабря 2018 г.

Карен Дж. Блаттлер

Магниты кажутся загадочными.Невидимые силы стягивают магнитные материалы или, перевернув один магнит, раздвигают их. Чем сильнее магниты, тем сильнее притяжение или отталкивание. И, конечно же, сама Земля — ​​магнит. Некоторые магниты сделаны из стали, но существуют и другие типы магнитов.

TL; DR (слишком долго; не читал)

Магнетит — природный магнитный минерал. Вращающееся ядро ​​Земли создает магнитное поле. Магниты Alnico изготовлены из алюминия, никеля и кобальта с меньшим количеством алюминия, меди и титана.Керамические или ферритовые магниты изготавливаются либо из оксида бария, либо из оксида стронция, легированного оксидом железа. Два редкоземельных магнита — это самарий-кобальт, который содержит сплав самария-кобальта с примесью микроэлементов (железо, медь, циркон), и неодимовые железо-борные магниты.

Определение магнитов и магнетизма

Любой объект, который создает магнитное поле и взаимодействует с другими магнитными полями, является магнитом. Магниты имеют положительный конец или полюс и отрицательный конец или полюс. Линии магнитного поля движутся от положительного полюса (также называемого северным полюсом) к отрицательному (южному) полюсу.Магнетизм относится к взаимодействию двух магнитов. Противоположности притягиваются, поэтому положительный полюс магнита и отрицательный полюс другого магнита притягиваются друг к другу.

Типы магнитов

Существуют три основных типа магнитов: постоянные магниты, временные магниты и электромагниты. Постоянные магниты сохраняют свои магнитные свойства в течение длительного времени. Временные магниты быстро теряют свой магнетизм. Электромагниты используют электрический ток для создания магнитного поля.

Постоянные магниты

Постоянные магниты сохраняют свои магнитные свойства в течение длительных периодов времени.Изменения в постоянных магнитах зависят от силы магнита и состава магнита. Изменения обычно происходят из-за изменений температуры (обычно повышения температуры). Магниты, нагретые до температуры Кюри, навсегда теряют свои магнитные свойства, потому что атомы выходят из конфигурации, вызывающей магнитный эффект. Температура Кюри, названная в честь первооткрывателя Пьера Кюри, варьируется в зависимости от магнитного материала.

Магнетит, постоянный магнит природного происхождения, является слабым магнитом.Более сильные постоянные магниты — это алнико, неодим, железо, бор, самарий-кобальт, керамические или ферритовые магниты. Все эти магниты соответствуют требованиям определения постоянных магнитов.

Магнетит, также называемый магнитным камнем, служил иглами компаса для многих исследователей, от китайских охотников за нефритом до путешественников по всему миру. Минеральный магнетит образуется при нагревании железа в атмосфере с низким содержанием кислорода, в результате чего образуется соединение оксида железа Fe 3 O 4 . Щепки магнетита служат компасом.Компасы относятся к 250 г. до н. Э. в Китае, где их называли южными указателями.

Магниты Alnico — это обычно используемые магниты, изготовленные из соединения 35 процентов алюминия (Al), 35 процентов никеля (Ni) и 15 процентов кобальта (Co) с 7 процентами алюминия (Al), 4 процентами меди (Cu) и 4 процентами. титан (Ti). Эти магниты были разработаны в 1930-х годах и стали популярными в 1940-х годах. Температура оказывает меньшее влияние на магниты Alnico, чем другие искусственно созданные магниты. Однако магниты Alnico легче размагнитить, поэтому стержни Alnico и подковообразные магниты должны храниться должным образом, чтобы они не размагничивались.

Магниты Alnico используются по-разному, особенно в аудиосистемах, таких как динамики и микрофоны. Преимущества магнитов Alnico включают высокую коррозионную стойкость, высокую физическую прочность (не трескаются, не ломаются и не ломаются) и устойчивость к высоким температурам (до 540 градусов Цельсия). К недостаткам можно отнести более слабое магнитное притяжение, чем у других искусственных магнитов.

Керамические (ферритовые) магниты

В 1950-х годах была разработана новая группа магнитов. Жесткие гексагональные ферриты, также называемые керамическими магнитами, можно разрезать на более тонкие ломтики и подвергать воздействию размагничивающих полей низкого уровня без потери своих магнитных свойств.Они также дешевы в изготовлении. Структура молекулярного гексагонального феррита встречается как в оксиде бария, легированном оксидом железа (BaO ∙ 6Fe 2 O 3 ), , так и в оксиде стронция, легированном оксидом железа (SrO ∙ 6Fe 2 O 3 ). Феррит стронция (Sr) имеет несколько лучшие магнитные свойства. Наиболее часто используемые постоянные магниты — это ферритовые (керамические) магниты. Помимо стоимости, преимущества керамических магнитов включают хорошую стойкость к размагничиванию и высокую коррозионную стойкость.Однако они хрупкие и легко ломаются.

Магниты из самария и кобальта были разработаны в 1967 году. Эти магниты с молекулярным составом SmCo 5 стали первыми коммерческими постоянными магнитами из редкоземельных и переходных металлов. В 1976 г. был разработан сплав самария-кобальта с микроэлементами (железом, медью и цирконием) с молекулярной структурой Sm 2 (Co, Fe, Cu, Zr) 17 . Эти магниты имеют большой потенциал для использования при более высоких температурах, примерно до 500 ° C, но высокая стоимость материалов ограничивает использование этого типа магнита.Самарий редко встречается даже среди редкоземельных элементов, а кобальт считается стратегическим металлом, поэтому поставки контролируются.

Самариево-кобальтовые магниты хорошо работают во влажных условиях. Среди других преимуществ — высокая термостойкость, устойчивость к низким температурам (-273 C) и высокая коррозионная стойкость. Однако, как и керамические магниты, самариево-кобальтовые магниты хрупкие. Как уже говорилось, они дороже.

Неодимовые железо-борные магниты

Неодимовые железо-борные магниты (NdFeB или NIB) были изобретены в 1983 году.Эти магниты содержат 70 процентов железа, 5 процентов бора и 25 процентов неодима, редкоземельного элемента. Магниты NIB быстро корродируют, поэтому в процессе производства на них наносится защитное покрытие, обычно никель. Вместо никеля можно использовать покрытия из алюминия, цинка или эпоксидной смолы.

Хотя магниты NIB являются самыми сильными из известных постоянных магнитов, они также имеют самую низкую температуру Кюри, около 350 ° C (некоторые источники говорят, что она составляет 80 ° C) среди других постоянных магнитов. Такая низкая температура Кюри ограничивает их промышленное использование.Магниты из неодима, железа и бора стали неотъемлемой частью бытовой электроники, включая сотовые телефоны и компьютеры. Магниты из неодима, железа и бора также используются в аппаратах магнитно-резонансной томографии (МРТ).

Преимущества магнитов NIB включают отношение мощности к весу (до 1300 раз), высокую устойчивость к размагничиванию при комфортных для человека температурах и экономичность. К недостаткам можно отнести потерю магнетизма при более низких температурах Кюри, низкую коррозионную стойкость (если покрытие повреждено) и хрупкость (может сломаться, потрескаться или сколотиться при внезапных столкновениях с другими магнитами или металлами.(См. «Ресурсы для магнитных фруктов», упражнение с использованием магнитов NIB.)

Временные магниты

Временные магниты состоят из так называемых материалов из мягкого железа. Мягкое железо означает, что атомы и электроны могут выровняться внутри железа и какое-то время вести себя как магнит. В список магнитных металлов входят гвозди, скрепки и другие материалы, содержащие железо. Временные магниты становятся магнитами при воздействии или помещении в магнитное поле. Например, игла, натираемая магнитом, становится временным магнитом, потому что магнит заставляет электроны выравниваться внутри иглы.Если магнитное поле или воздействие магнита достаточно сильное, мягкое железо может стать постоянным магнитом, по крайней мере, до тех пор, пока тепло, удар или время не заставят атомы потерять ориентацию.

Электромагниты

Третий тип магнита возникает, когда электричество проходит через провод. Обертывание проволоки вокруг сердечника из мягкого железа усиливает магнитное поле. Увеличение электричества увеличивает силу магнитного поля. Когда по проводу течет электричество, магнит работает.Остановите поток электронов, и магнитное поле схлопнется. (См. Ресурсы для моделирования электромагнетизма с помощью PhET.)

Самый большой магнит в мире

Самый большой магнит в мире — это, по сути, Земля. Твердое железо-никелевое внутреннее ядро ​​Земли, вращающееся во внешнем жидком железо-никелевом ядре, ведет себя как динамо-машина, генерируя магнитное поле. Слабое магнитное поле действует как стержневой магнит, наклоненный примерно на 11 градусов от оси Земли. Северный конец этого магнитного поля — южный полюс стержневого магнита.Поскольку противоположные магнитные поля притягиваются друг к другу, северный конец магнитного компаса указывает на южный конец магнитного поля Земли, расположенный рядом с северным полюсом (иными словами, южный магнитный полюс Земли фактически расположен рядом с географическим северным полюсом. , хотя вы часто будете видеть этот южный магнитный полюс, обозначенный как северный магнитный полюс).

Магнитное поле Земли создает магнитосферу, окружающую Землю. Взаимодействие солнечного ветра с магнитосферой вызывает северное и южное сияние, известное как северное сияние и австралийское сияние.

Магнитное поле Земли также влияет на минералы железа в потоках лавы. Минералы железа в лаве совпадают с магнитным полем Земли. Эти выровненные минералы «застывают» на месте по мере того, как лава остывает. Исследования магнитных совмещений в базальтовых потоках по обе стороны от Срединно-Атлантического хребта предоставляют доказательства не только инверсий магнитного поля Земли, но и теории тектоники плит.

Какие металлы являются магнитными? | Металлические супермаркеты

Магниты были впервые обнаружены древними цивилизациями, насчитывающими 2500 лет, а к XII и XIII векам нашей эры магнитные компасы широко использовались для навигации в Китае и Европе.Сегодня магниты являются неотъемлемой частью современной техники. Они присутствуют практически в любой бытовой технике, которую вы можете назвать, от динамиков мобильных телефонов до электродвигателей, стиральных машин и кондиционеров.

Магнитная промышленность продолжает расти из-за повышенного спроса на компоненты магнитных цепей, широко используемые в промышленном оборудовании, в то время как технологические достижения позволяют магнитам быть в 60 раз сильнее, чем они были 90 лет назад.

Какие металлы являются магнитными?

Магнитные металлы включают:

  • Утюг
  • Никель
  • Кобальт
  • Некоторые сплавы редкоземельных металлов

Эти магнитные металлы подпадают под следующие категории:

  • Постоянные магниты
  • Электромагниты
  • Неодимовые магниты

Постоянные магниты

Когда люди думают о магнитах, они часто думают о постоянных магнитах.Это объекты, которые можно намагничивать для создания магнитного поля. Самый распространенный пример — магнит на холодильник, который используется для хранения записок на дверце холодильника.

Наиболее распространенными металлами, используемыми для постоянных магнитов, являются железо, никель, кобальт и некоторые сплавы редкоземельных металлов.

Есть два типа постоянных магнитов: из «твердых» магнитных материалов и из «мягких» магнитных материалов. «Твердые» магнитные металлы имеют тенденцию оставаться намагниченными в течение длительного периода. Типичные примеры:

  • Сплав Alnico , железный сплав с алюминием, никелем и кобальтом.Из сплавов алнико получаются сильные постоянные магниты. Они широко используются в промышленной и бытовой электронике. Например, в больших электродвигателях, микрофонах, громкоговорителях, звукоснимателях электрогитары и микроволновых печах.
  • Феррит , керамическое соединение, состоящее из оксида железа и других металлических элементов. Ферриты используются в магнитах холодильников и небольших электродвигателях.

«Мягкие» магнитные металлы могут намагничиваться, но быстро теряют свой магнетизм. Распространенными примерами являются сплавы железо-кремний и сплавы никель-железо.Эти материалы обычно используются в электронике, например, в трансформаторах и магнитных экранах.

Электромагниты

Электромагниты состоят из катушки из медной проволоки, намотанной на сердечник из железа, никеля или кобальта. Спиральный провод будет генерировать магнитное поле, когда через него проходит электрический ток, однако магнитное поле исчезает в момент прекращения тока. Электромагнитам для работы требуется электричество. Их полезность заключается в способности изменять силу магнитного поля путем управления электрическим током в проводе.

Электромагниты обычно используются в электродвигателях и генераторах. Они оба работают над научным принципом электромагнитной индукции, открытым ученым Майклом Фарадеем в 1831 году, согласно которому движущийся электрический ток создает магнитное поле, и наоборот. В электродвигателях электрический ток создает магнитное поле, которое перемещает электродвигатель. В генераторах внешняя сила, такая как ветер, текущая вода или пар, вращает вал, который перемещает набор магнитов вокруг спирального провода, создавая электрический ток.

Электромагниты также используются для переключения переключателей в реле, используемых в телефонных станциях, железнодорожной сигнализации и светофорах.

Краны

Junkyard также оснащены электромагнитами, которые используются для легкого подъема и опускания крупногабаритных транспортных средств. Эти электромагниты имеют форму круглой пластины, прикрепленной к концу крана.

Современная железнодорожная система, известная как Маглев (сокращение от магнитной левитации), использует электромагниты для левитации поезда над рельсами. Это снижает трение и позволяет поезду двигаться с огромной скоростью.

Передовые области применения электромагнитов включают аппараты магнитно-резонансной томографии (МРТ) и ускорители частиц (например, Большой адронный коллайдер).

Неодимовые магниты

Неодимовые магниты — это разновидность редкоземельных магнитов, состоящих из сплава неодима, железа и бора. Они были разработаны в 1982 году компаниями General Motors и Sumitomo Special Metals. Неодимовые магниты — это самый мощный из имеющихся на рынке постоянных магнитов. Они используются, когда требуются сильные постоянные магниты, особенно в двигателях аккумуляторных инструментов, жестких дисках и магнитных креплениях.

Превращение немагнитных металлов в магниты

Медь и марганец обычно не обладают магнитными свойствами. Однако новаторский метод, разработанный Оскаром Сеспедесом из Университета Лидса, Великобритания, превратил медь и марганец в магниты.

Сеспедес и его команда изготовили пленки из меди и марганца на углеродных структурах, названных Buckyballs. При приложении и снятии внешнего магнитного поля пленки сохраняли 10% магнитного поля. Этот новый метод призван обеспечить более биосовместимый и экологически чистый способ производства аппаратов МРТ.

Другие возможные применения включают использование в ветровых турбинах. В настоящее время в ветряных турбинах используется железо, кобальт и никель с редкоземельными элементами. Но эти элементы дороги и сложны в добыче. Этот прорыв открывает возможности для более дешевых альтернатив.

Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 85 обычными магазинами в США, Канаде и Великобритании. Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.

В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и пластины. Мы можем разрезать металл в точном соответствии с вашими требованиями.

Посетите одно из наших 80+ офисов в Северной Америке сегодня.

Процесс производства магнита | Как делаются магниты

Есть несколько способов изготовления магнитов, но наиболее распространенный метод называется порошковой металлургией.В этом процессе подходящая композиция измельчается в мелкий порошок, уплотняется и нагревается, чтобы вызвать уплотнение посредством «жидкофазного спекания». Поэтому такие магниты чаще всего называют спеченными магнитами. Этим методом изготавливаются ферритовые, самариево-кобальтовые (SmCo) и неодим-железо-борные (нео) магниты. В отличие от феррита, который представляет собой керамический материал, все магниты из редкоземельных элементов представляют собой сплавы металлов.


Подходящее сырье плавится в вакууме или в инертном газе в индукционной плавильной печи.Расплавленный сплав либо выливают в форму на охлаждающую пластину, либо обрабатывают в машине для разливки ленты — устройстве, которое формирует тонкую непрерывную металлическую полосу. Эти затвердевшие металлические «куски» измельчаются и измельчаются до мелкого порошка диаметром от 3 до 7 микрон. Этот очень мелкий порошок химически активен, способен самовоспламеняться на воздухе и поэтому должен быть защищен от воздействия кислорода.

Существует несколько методов уплотнения порошка, и все они включают выравнивание частиц таким образом, чтобы в готовой детали все магнитные области были направлены в заданном направлении.Первый метод называется осевым или поперечным прессованием. Здесь порошок помещается в полость инструмента на прессе, а пуансоны входят в инструмент для сжатия порошка. Непосредственно перед уплотнением наносится выравнивающее поле. Уплотнение «замораживает» это выравнивание. При осевом (параллельном) прессовании выравнивающее поле параллельно направлению уплотнения. При поперечном (перпендикулярном) прессовании поле перпендикулярно давлению уплотнения. Поскольку мелкие частицы порошка вытянуты в направлении магнитного выравнивания, поперечное прессование обеспечивает лучшее выравнивание и, следовательно, более энергоемкий продукт.При прессовании порошка в гидравлических или механических прессах форма ограничивается простыми поперечными сечениями, которые можно вытолкнуть из полости матрицы.

Второй метод уплотнения называется изостатическим прессованием, при котором гибкий контейнер заполняется порошком, контейнер герметизируется, применяется выравнивающее поле и контейнер помещается в изостатический пресс. С помощью жидкости, будь то гидравлическая жидкость или вода, давление прикладывается к внешней стороне герметичного контейнера, равномерно уплотняя его со всех сторон.Основное преимущество изготовления магнитных блоков с помощью изостатического прессования заключается в том, что можно изготавливать блоки очень большого размера — часто до 100 x 100 x 250 мм, и поскольку давление прикладывается одинаково со всех сторон, порошок остается в хорошем выравнивании с получением максимально возможной энергии. .

Прессованные детали упаковываются в «лодочки» для загрузки в вакуумную печь для спекания. Конкретные температуры и наличие вакуума или инертного газа зависят от типа и марки производимого магнита.Оба редкоземельных материала нагревают до температуры спекания и дают возможность уплотняться. SmCo требует дополнительной обработки растворением после спекания. После достижения комнатной температуры оба материала подвергаются отпускной термообработке при более низкой температуре. Во время спекания магниты линейно сжимаются примерно на 15-20%. Готовые магниты имеют шероховатую поверхность и приблизительные размеры. У них также нет внешнего магнитного поля.


ОТДЕЛКА

Спеченные магниты подвергаются некоторой обработке, которая может варьироваться от гладкого и параллельного шлифования, шлифования по внешнему или внутреннему диаметру или нарезки магнитов блоков на более мелкие детали.Материал магнита является хрупким и очень твердым (Rockwell C 57–61) и требует алмазных кругов для резки и алмазных или специальных абразивных кругов для шлифования. Нарезка ломтиками может выполняться с превосходной точностью, часто устраняя необходимость в последующем шлифовании. Все эти процессы необходимо проводить очень осторожно, чтобы свести к минимуму выкрашивание и растрескивание.

В некоторых случаях окончательная форма магнита способствует обработке фигурным алмазным шлифовальным кругом, например, дуги и хлебные буханки.Продукт приблизительно окончательной формы пропускается через шлифовальный круг, который обеспечивает точные размеры. Для мелкосерийного производства этих сложных форм обычно используется электроэрозионная обработка. Простые двухмерные профили, EDM быстрее, а более сложные формы с использованием 3-5-осевых станков работают медленнее.

Цилиндрические детали могут быть запрессованы в форму, обычно в осевом направлении, или просверлены из блочного материала. Эти более длинные цилиндры, сплошные или с внутренним диаметром, позже могут быть разрезаны на тонкие магниты в форме шайб.

Для крупносерийного производства, обычно 5000 или более штук, обычно более экономично изготавливать оснастку и производить ее заданную форму. Для небольших тиражей или для определенных свойств может быть предпочтительнее обрабатывать магниты из блока. При прессовании минимизируется отход материала, например, мелкой стружки. Количество заказа, форма, размер и сложность детали будут влиять на решение о том, какой метод производства предпочтительнее. Срок поставки также повлияет на решение, поскольку изготовление ограниченных партий из складских блоков, вероятно, происходит быстрее, чем заказ инструментов для штамповки деталей.Стоимость этих вариантов не всегда проста. Рекомендуем связаться с нами, чтобы обсудить варианты.

Хотя из этих сплавов можно изготавливать магниты сложной формы, эти материалы лучше всего подходят для изготовления более простых форм. Отверстия, большие фаски или щели обходятся дороже. Допуски труднее удерживать в более сложных формах, которые могут привести к вариациям поля магнитного потока и потенциальному физическому напряжению детали в сборке.

Обработанные магниты будут иметь острые края, которые склонны к сколам.Покрытие вокруг острого края также проблематично. Самый распространенный метод уменьшения резкости — это вибрационное хонингование, часто называемое вибрационным галтованием и выполняемое в абразивной среде. Указанное закругление кромки зависит от требований к последующей обработке и обращению, но чаще всего это радиус от 0,005 до 0,015 дюйма (от 0,127 до 0,38 мм).

Магниты

Neo, которые склонны к ржавлению или вступают в химические реакции, почти всегда имеют покрытие. Самарий-кобальт, естественно, более устойчив к коррозии, чем нео, но иногда может иметь покрытие.Наиболее распространенные защитные покрытия включают эпоксидное покрытие, нанесенное сухим напылением, электронное покрытие (эпоксидное покрытие), электролитический никель, алюминиевый IVD и комбинации этих покрытий. Магниты также могут быть покрыты конверсионными покрытиями, такими как фосфаты и хроматы цинка, железа или марганца. Конверсионные покрытия обычно подходят для временной защиты и могут образовывать нижний слой для эпоксидного покрытия или верхний слой для усиления защиты от алюминиевого IVD.


После завершения изготовления магниту требуется «зарядка» для создания внешнего магнитного поля.Это может быть выполнено в соленоиде — полом цилиндре, в который могут быть помещены магниты различных размеров и форм — или с помощью приспособлений, предназначенных для создания уникальных магнитных узоров. Также можно намагничивать большие сборки, чтобы избежать манипуляций с этими мощными магнитами и их сборки в их намагниченном состоянии. Требования к намагничивающему полю значительны. Этот, как и многие другие аспекты выбора магнита, следует обсудить с нашими инженерами и производителями.

В некоторых случаях магниты требуют стабилизации или калибровки.Стабилизация — это процесс предварительной обработки магнитов внутри или вне сборки, так что последующее использование не приведет к дополнительной потере выходного магнитного потока. Калибровка выполняется для сужения диапазона выходных характеристик группы магнитов. Эти процессы требуют обработки в печи при повышенной температуре или обратного импульса в намагничивателе в полях ниже полной мощности сбоя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *