Утилизация тепла дымовых газов – экология с выгодой / Блог компании ГК ЛАНИТ / Хабр

экология с выгодой / Блог компании ГК ЛАНИТ / Хабр

В поисках способов повышения эффективности предприятий энергетического сектора, а также других промышленных объектов, на которых используется оборудование, сжигающее ископаемое топливо (паровые, водогрейные котлы, технологические печи и т.д.), вопрос использования потенциала дымовых газов поднимается не в самую первую очередь.

Между тем, опираясь на существующие нормы расчёта, разработанные десятки лет назад, и сложившиеся стандарты выбора ключевых показателей работы подобного оборудования, эксплуатирующие организации теряют деньги, выпуская их в прямом смысле в трубу, попутно ухудшая экологическую обстановку в глобальном масштабе.

Если, как и команда «Первого инженера», вы считаете неправильным упускать возможность позаботиться об окружающей среде и здоровье жителей вашего города с выгодой для бюджета предприятия, читайте статью о том, как превратить дымовые газы в энергоресурс.  


Изучаем стандарты


Ключевой параметр, определяющий КПД котельного агрегата, – температура уходящих газов. Тепло, теряемое с уходящими газами, составляет значительную часть всех тепловых потерь (наряду с потерями тепла от химического и механического недожога топлива, потерями с физическим теплом шлаков, а также утечек тепла в окружающую среду вследствие наружного охлаждения). Эти потери оказывают решающее влияние на экономичность работы котла, снижая его КПД. Таким образом, мы понимаем, что чем ниже температура дымовых газов, тем выше эффективность котла.

Оптимальная температура уходящих газов для разных видов топлива и рабочих параметров котла определяется на основании технико-экономических расчётов на самом раннем этапе его создания. При этом максимально полезное использование тепла уходящих газов традиционно достигается за счёт увеличения размеров конвективных поверхностей нагрева, а также развития хвостовых поверхностей – водяных экономайзеров, регенеративных воздухоподогревателей.

Но даже несмотря на внедрение технологий и оборудования для наиболее полной утилизации тепла, температура уходящих газов согласно действующей нормативной документации должна находиться в диапазоне:

  • 120-180 °С для котлов на твёрдом топливе (в зависимости от влажности топлива и рабочих параметров котла),
  • 120-160 °С для котлов на мазуте (в зависимости от содержания в нём серы),
  • 120-130 °С для котлов на природном газе.

Указанные значения определены с учетом факторов экологической безопасности, но в первую очередь, исходя из требований к работоспособности и долговечности оборудования.

Так, минимальный порог задаётся таким образом, чтобы исключить риск выпадения конденсата в конвективной части котла и далее по тракту (в газоходах и дымовой трубе). Однако для предупреждения коррозии вовсе не обязательно жертвовать теплом, которое выбрасывается в атмосферу вместо того, чтобы совершать полезную работу.


Коррозия. Исключаем риски


Не спорим, коррозия – явление неприятное, способное поставить под угрозу обеспечение безопасной работы котельной установки и существенно сократить назначенный ей срок эксплуатации.

При охлаждении дымовых газов до температуры точки росы и ниже, происходит конденсация водяных паров, вместе с которыми переходят в жидкое состояние и соединения NOx, SOx, которые, вступая в реакцию с водой, образуют кислоты, разрушительно воздействующие на внутренние поверхности котла. В зависимости от типа сжигаемого топлива, температура кислотной точки росы может быть различной, как и состав кислот, выпадающих в виде конденсата. Результат, тем не менее, один – коррозия.

Уходящие газы котлов, работающих на природном газе, в основном состоят из следующих продуктов сгорания: водяных паров (Н2О), углекислого газа (СО2), угарного газа (СО) и несгоревших горючих углеводородов СnHm (два последних появляются при неполном сгорании топлива, когда режим горения не отлажен).

Поскольку в атмосферном воздухе содержится большое количество азота, среди прочего, в продуктах сгорания появляются оксиды азота NO и NO2, обобщённо именуемые NOx, пагубно воздействующие на окружающую среду и здоровье человека. Соединяясь с водой, оксиды азота и образуют коррозионно-активную азотную кислоту.

При сжигании мазута и угля в продуктах сгорания появляются оксиды серы, именуемые SOx. Их негативное воздействие на окружающую среду также широко исследовано и не подвергается сомнению. Образующийся при взаимодействии с водой кислый конденсат вызывает сернистую коррозию поверхностей нагрева.

Традиционно, температура уходящих газов, как было показано выше, выбирается таким образом, чтобы защитить оборудование от выпадения кислоты на поверхностях нагрева котла. Более того, температура газов должна обеспечить конденсацию NOx и SOx за пределами газового тракта с тем, чтобы защитить от коррозионных процессов не только сам котёл, но и газоходы с дымовой трубой. Конечно, существуют определённые нормы, ограничивающие допустимые концентрации выбросов оксидов азота и серы, но это нисколько не отменяет факт накопления этих продуктов сгорания в атмосфере Земли и выпадение их в виде кислотных осадков на её поверхность.

Сера, содержащаяся в мазуте и угле, а также унос не сгоревших частиц твёрдого топлива (в том числе золы) накладывают дополнительные условия по очистке дымовых газов. Применение систем газоочистки значительно удорожает и усложняет процесс утилизации тепла дымовых газов, делая подобные мероприятия слабо привлекательными с экономической точки зрения, а зачастую практически не окупаемыми.

В некоторых случаях местные органы власти устанавливают минимальную температуру дымовых газов в устье трубы с целью обеспечения адекватного рассеяния уходящих газов и отсутствия дымового факела. Кроме того, некоторые предприятия могут по собственной инициативе применять подобную практику для улучшения своего имиджа, поскольку широкая общественность зачастую интерпретирует наличие видимого дымового факела как признак загрязнения окружающей среды, в то время как отсутствие дымового факела может рассматриваться как признак чистого производства.

Всё это приводит к тому, что при определённых погодных условиях предприятия могут специально подогревать дымовые газы перед выбросом их в атмосферу. Хотя, понимая состав уходящих газов котла, работающего на природном газе (он детально разобран выше), становится очевидно, что белый «дым», который идёт из трубы (при правильной настройке режима горения), – это по большей части пары воды, образующиеся в результате реакции горения природного газа в топке котла.

Борьба с коррозией требует применения материалов, устойчивых к её негативному воздействию (такие материалы существуют и могут применяться на установках, использующих в качестве топлива газ, продукты нефтепереработки и даже отходы), а также организацию сбора, переработки кислого конденсата и его утилизации.


Технология


Внедрение комплекса мер по снижению температуры дымовых газов за котлом на существующем предприятии обеспечивает увеличение КПД всей установки, в состав которой входит котельный агрегат, используя, прежде всего, сам котёл (тепло, вырабатываемое в нём).

Концепция таких решений, по своей сути, сводится к одному: на участке газохода до дымовой трубы монтируется теплообменник, воспринимающий тепло дымовых газов охлаждающей средой (например, водой). Эта вода может быть, как непосредственно конечным теплоносителем, который необходимо нагреть, так и промежуточным агентом, который передаёт тепло посредством дополнительного теплообменного оборудования другому контуру.

Принципиальная схема представлена на рисунке:


Сбор образующегося конденсата происходит непосредственно в объёме нового теплообменного аппарата, который выполняется из коррозионно-устойчивых материалов. Это обусловлено тем, что порог температуры точки росы для влаги, содержащейся в объёме уходящих газов, преодолевается именно внутри теплообменника. Таким образом, полезно используется не только физическое тепло дымовых газов, но и скрытая теплота конденсации содержащихся в них водяных паров. Сам же аппарат должен рассчитываться таким образом, чтобы его конструктив не оказывал чрезмерного аэродинамического сопротивления и, как следствие, ухудшения условий работы котельного агрегата.

Конструкция теплообменного аппарата может представлять собой либо обычный рекуперативный теплообменник, где перенос тепла от газов к жидкости происходит через разделяющую стенку, либо контактный теплообменник, в котором дымовые газы непосредственно вступают в контакт с водой, которая разбрызгивается форсунками в их потоке.

Для рекуперативного теплообменника решение вопроса по кислотному конденсату сводится к организации его сбора и нейтрализации. В случае же с контактным теплообменником применяется несколько иной подход, в чём-то сходный с периодической продувкой системы оборотного водоснабжения: по мере увеличения кислотности циркулирующей жидкости, некоторое её количество отбирается в накопительный бак, где происходит обработка реагентами с последующей утилизацией воды в дренажную канализацию, либо направлением её в технологический цикл.

Отдельные применения энергии дымовых газов могут быть ограничены вследствие разницы между температурой газов и потребностями в определённой температуре на входе энергопотребляющего процесса. Однако и для таких, казалось бы, тупиковых ситуаций разработан подход, который опирается на качественно новые технологии и оборудование.

С целью повышения эффективности процесса утилизации тепла дымовых газов в мировой практике в качестве ключевого элемента системы всё чаще применяются инновационные решения на базе тепловых насосов. В отдельных секторах промышленности (например, в биоэнергетике) такие решения применяются на большинстве вводимых в эксплуатацию котлов. Дополнительная экономия первичных энергоресурсов в этом случае достигается за счёт применения не традиционных парокомпрессионных электрических машин, а более надёжных и технологичных абсорбционных бромисто-литиевых тепловых насосов (АБТН), которым для работы нужна не электроэнергия, а тепло (зачастую это может быть не используемое бросовое тепло, которое в избытке присутствует практически на любом предприятии). Такое тепло стороннего греющего источника активизирует внутренний цикл АБТН, который позволяет преобразовывать располагаемый температурный потенциал уходящих газов, и передавать его более нагретым средам.


Результат


Охлаждение уходящих газов котла с применением подобных решений может быть достаточно глубоким – до 30 и даже 20 °С с первоначальных 120-130 °С. Полученного тепла вполне достаточно, чтобы подогреть воду для нужд химводоподготовки, подпитки, горячего водоснабжения и даже теплосети.

Экономия топлива при этом может достигать 5÷10 %, а повышение КПД котельного агрегата – 2÷3 %.

Таким образом, внедрение описанной технологии позволяет решать сразу несколько задач. Это:

  • максимально полное и полезное использование тепла дымовых газов (а также скрытой теплоты конденсации водяных паров),
  • снижение объёма выбросов NOx и SOx в атмосферу,
  • получение дополнительного ресурса – очищенной воды (которому найдётся полезное применение на любом предприятии, например, в качестве подпитки теплосети и других водяных контуров),
  • ликвидация дымового факела (он становится едва различимым или исчезает вовсе).

Практика показывает, что целесообразность применения подобных решений в первую очередь зависит от:
  • возможности полезной утилизации имеющегося тепла дымовых газов,
  • продолжительности использования полученной тепловой энергии в году,
  • стоимости энергоресурсов на предприятии,
  • наличия превышения предельно допустимой концентрации выбросов по NOx и SOx (а также от строгости местного экологического законодательства),
  • способа нейтрализации конденсата и вариантов его дальнейшего использования.

habr.com

как работает система, методы утилизации

Утилизация тепла используется, чтобы понизить до минимума потери установок вентилирования воздуха. Применяются сложные технические устройства, способные поглощать и аккумулировать энергию для последующего использования потребителем.

Примеры упрощенных тепловых схем

Тепловой модуль (сокращенно ТМ) – главный блок системы когенерации. Функции: сбор потока горячего воздуха и объединение с поступлением холодного извне. В зависимости от источника энергии различают 2 вида теплообменников:

  • кожухо-трубчатый;
  • пластинчатый.

Работает по принципу – вода/антифриз или антифриз/антифриз. ТМ выполняет главную функцию по утилизации от работы электрогенераторов. После объединения в месте сбора собранный поток направляют дальше для потребления. Процессы, выполняемые установкой, называют СУТ (системой утилизации тепла). Чаще ее объединяют с механизмами, охлаждающими генератор. В этом случае получают установку, работающую по замкнутому принципу – сбор/понижение температуры.

ТМ увеличивает КПД (коэффициент полезного действия) установки, вырабатывающей тепло, до 86-90%. Соответственно достигают достаточной экономии затраченных ресурсов на производство энергии.

Как мы снимаем тепло с электростанции?

Когда работают двигатели внутреннего сгорания (ДВС), процесс сбора энергии выполняется штатно:

  • УТА – утилизатор энергии антифриза забирает горячий воздух, затем передает для нагревания воды;
  • Работа утилизатора дымовых газов (УДГ) уменьшает разогрев уже на выходе. Температура нагрева дыма достигает 460-550 °С. После прохождения через утилизатор с чиллером, начинается остывание (до 125-180°С). Разница в температуре идет на разогрев больших объемов воды для дальнейшего потребления.

Если сравнить объем энергетической массы, утилизируемой системой утилизации тепла, получаем пропорцию: на 100 единиц электроэнергии идет выработка 110-130 единиц энергии. При использовании турбинных двигателей внутреннего сгорания для утилизации используют только сбор энергии горячего дыма. При этом мощность УДГ зависит от размеров (параметров) турбинной установки. Она достигает значений в диапазоне 118% – 145% от выработки электроэнергии.

Преимущества утилизаторов тепловой энергии

Установки, выполняющие сбор и переработку тепловой энергии, используют технологии с максимальным коэффициентом полезного действия. Устройства обеспечиваются:

  • гарантией производителя;
  • сопровождением доставки менеджерами;
  • соответствием гос.стандартизации;
  • тестовым монтажом и запуском в присутствии представителя компании производителя.

Конструкции установок по утилизации снабжены:

  • нержавеющими трубками для теплообмена;
  • специальным покрытием поверхностей котлов-утилизаторов для более легкой очистки трубок и предохранения теплообменника от повреждений;
  • компенсатором с защитными функциями от дефектов при аварии, нарушении условий работы;
  • спец. устройствами для уменьшения показателя аэродинамического сопротивления (до двух кПа).

Кожухотрубное устройство УТА (утилизатора тепла антифриза) облегчает ремонт, очищение загрязнений. Не нужна замена прокладок между отдельными пластинами. Перед выпуском детали ТМ проходит испытания в условиях давления 0.8 МПа. Это превышает рабочее давление жидкостей при эксплуатации на две десятых (0.6 МПа).

Утилизация тепла отходящих дымовых газов

Продукт выхлопа печей – горячий дымовой газ. Потери тепловой энергии с выходом достигают 80% при работе мартеновских печей. Поэтому в печах нагрева теряется с газом 60% тепла. Количество горячего воздуха, безвозвратно уходящего вверх, зависит от показателей разогрева и способности использовать непосредственно в печи.

Схема глубокой утилизации тепла решается двумя способами:

  1. Возвращается часть энергии обратно в печь.
    При этом нужна передача другим потокам газа или воздуха, направленным к источнику разогрева. Применение специальных теплообменников повышает КПД печи, показатели температуры и существенно экономит нормы расхода горючего.
  2. Без возврата тепла в печной агрегат.
    Утилизированный поток горячего воздуха применяют в котельных, турбинных комплексах, газопоршневых устройствах. Это приводит к весомой экономии топлива.

Используют одновременно два метода при разогреве газа до высоких температур. При разлоеве дымового газа до 745-800°С, энергии хватает для возврата в печь и для теплосиловой установки.

Утилизация тепла дымового газа с возвратом экономит столько энергии, сколько ее удалось вернуть в систему. Эффект от установки – снижение затраченных средств на нагрев металлических элементов в печах. Потери разогретого воздуха свести к нулю невозможно.

Проблемы утилизации тепла отходящего газа актуальны при производстве:

  • Фосфогипса – сгенерированную таким методом серную кислоту используют вновь для разложения соединений фосфора и получения повторно фосфорной кислоты;
  • Лаков и красок – газ, полученный при утилизации, самый горячий из промышленных газов;
  • Никеля, меди, свинца – теплотворная способность достигает 700 ккал/нм, что экономит при возвращении газа в печь почти 15% топлива;
  • Стальных сплавов – газ отдает тепло воде, образующийся пар используют в других процессах.

При утилизации отходящих газов нужно тщательно выполнить очистку от вредных и отравляющих примесей. Это усложняет улавливание и использование разогретых паров. Развитие методов очищения в сфере машиностроения, химической промышленности осваивает новые способы обратного применения чистого потока тепла.

Утилизация высоко и низкопотенциального тепла

При работе электродуговых печей происходит выброс высокопотенциального тепла. Утилизация призвана сохранить и использовать более четверти энергии, использованной в производстве. Утилизация высокопотенциального тепла на КС (компрессорных станциях) выполняется рекуператором совместно с:

  • блоком для очистки газа от загрязнений;
  • теплообменником газ/теплоноситель;
  • распределяющим тепло устройством.

Зона рекуперации (преобразования) – это теплообменник, с циркуляцией теплоносителя. Выделяемое тепло применяют для выработки электроэнергии.

Промышленные процессы сопровождаются выделением некоторого количества теплого воздуха, рассеивающегося в атмосфере. Для него используют термин «сбросное тепло». Это низкопотенциальная энергия из-за небольшой разности ее температуры с окружающим воздухом. У воздушного потока высокий потенциал, преобразование энергии в полезную – серьезная техническая задача. К низкопотенциальным источникам относят:

  • промышленные производства – при сжатии газов в компрессорах, сгорании топлива;
  • устройства охлаждения очистных сооружений – сточные воды;
  • установки для сжигания биогаза – энергия от сгорания топливных смесей;
  • линии по переработке продуктов нефти и газа – утилизация тепла при сгорании попутного газа;
  • предприятия по переработке птицы, скота – биологическое топливо;
  • предприятия лесоперерабатывающего комплекса – тепло при горении отходов.

В разработке систем утилизации тепла учитываются задачи по использованию:

  • дополнительного источника энергии;
  • пунктов для электропитания;
  • работы системы отопления отдельно стоящих домов, поселков (при удалении от электросетей).

Эффективная утилизация тепловых выбросов позволит уменьшить расходы на энергоносители, обеспечит автономными источниками энергии.

Предыдущая

БиоотходыСпособы переработки органических отходов

Следующая

Утилизация отходовПереработка кабеля, медных проводов, оплетки

bezotxodov.ru

Способ глубокой утилизации тепла дымовых газов

Изобретение относится к теплоэнергетике. Способ глубокой утилизации тепла дымовых газов включает предварительное охлаждение дымовых газов в газо-газовом поверхностном пластинчатом теплообменнике, нагревая противотоком осушенные дымовые газы, для создания температурного запаса, предотвращающего конденсацию остаточных водяных паров в дымовой трубе. Дальнейшее охлаждение дымовых газов до температуры, близкой к точке росы водяных паров, осуществляется в контактном газоводяном водоподогревателе, который нагревает воду. Охлажденные влажные дымовые газы подают в газовоздушный поверхностный пластинчатый теплообменник — конденсатор, где конденсируются содержащиеся в дымовых газах водяные пары, нагревая воздух. Осушенные дымовые газы подают дополнительным дымососом в газо-газовый поверхностный пластинчатый теплообменник, где нагревают для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу. Технический результат: повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов. 1 ил., 1 табл.

 

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе.

Известны серийно выпускаемые Костромским калориферным заводом калориферы типа КСк (Кудинов А.А. Энергосбережение в теплогенерирующих установках. — Ульяновск: УлГТУ, 2000. — 139, стр. 33), состоящие из газоводяного поверхностного теплоутилизатора, поверхность теплообмена которого выполнена из оребренных биметаллических трубок, сетчатого фильтра, распределительного клапана, каплеуловителя и гидропневматического обдувочного устройства.

Калориферы типа КСк работают следующим образом. Дымовые газы попадают на распределительный клапан, который делит их на два потока, основной поток газа направляется через сетчатый фильтр в теплоутилизатор, второй — по обводной линии газохода. В теплоутилизаторе водяные пары, содержащиеся в дымовых газах, конденсируются на оребренных трубках, нагревая текущую в них воду. Образующийся конденсат собирается в поддоне и подается насосами в схему подпитки теплосети. Нагретая в теплоутилизаторе вода подается потребителю. На выходе из теплоутилизатора осушенные дымовые газы смешиваются с исходными дымовыми газами из обводной линии газохода и направляются через дымосос в дымовую трубу.

Для работы теплоутилизатора в режиме конденсации всей его конвективной части требуется, чтобы температура нагрева воды в конвективном пакете не превышала 50°С. Для использования такой воды в системах отопления ее нужно дополнительно догревать.

Для предотвращения конденсации остаточных водяных паров дымовых газов в газоходах и дымовой трубе, часть исходных газов через обводной канал подмешиваются к осушенным дымовым газам, повышая их температуру. При таком подмесе увеличивается и содержание водяных паров в уходящих дымовых газах, снижая эффективность утилизации тепла.

Известен теплоутилизатор (RU 2323384 С1, МПК F22B 1/18 (2006.01), опубл. 27.04.2008), содержащий контактный теплообменник, каплеуловитель, газо-газовый теплообменник, включенный по схеме прямотока, газоходы, трубопроводы, насос, датчики температуры, клапаны-регуляторы. По ходу оборотной воды контактного теплообменника последовательно расположены водо-водяной теплообменник и водовоздушный теплообменник с обводным каналом по ходу воздуха.

Известен способ работы этого теплоутилизатора. Уходящие газы по газоходу поступают на вход газо-газового теплообменника, последовательно проходя три его секции, затем на вход контактного теплообменника, где, проходя через насадку, омываемую оборотной водой, охлаждаются ниже точки росы, отдавая явное и скрытое тепло оборотной воде. Далее охлажденные и влажные газы освобождаются от большей части унесенной потоком жидкой воды в каплеуловителе, нагреваются и подсушиваются, по меньшей мере, в одной секции газо-газового теплообменника, дымососом направляются в трубу и выбрасываются в атмосферу. Одновременно нагретая оборотная вода из поддона контактного теплообменника насосом подается в водо-водяной теплообменник, где нагревает холодную воду из трубопровода. Нагретая в теплообменнике вода поступает на нужды технологического и бытового горячего водоснабжения или в низкотемпературный отопительный контур.

Далее оборотная вода поступает в водовоздушный теплообменник, нагревает, по меньшей мере, часть дутьевого воздуха, поступающего из-за пределов помещения по воздуховоду, охлаждаясь до минимально возможной температуры, и поступает в контактный теплообменник через водораспределитель, где отбирает тепло от газов, попутно промывая их от взвешенных частиц, и поглощает часть оксидов азота и серы. Нагретый воздух из теплообменника дутьевым вентилятором подается в штатный воздухоподогреватель или непосредственно в топку. Оборотная вода по необходимости фильтруется и обрабатывается известными способами.

Для осуществления такого способа необходима система регулирования вследствие использования утилизируемого тепла для целей горячего водоснабжения из-за непостоянства суточного графика потребления горячей воды.

Нагретая в теплообменнике вода, поступающая на нужды горячего водоснабжения или в низкотемпературный отопительный контур, требует ее доведения до необходимой температуры, так как не может быть нагрета в теплообменнике выше температуры воды оборотного контура, которая определяется температурой насыщения водяных паров в дымовых газах. Низкий нагрев воздуха в водовоздушном теплообменнике не позволяет использовать этот воздух для отопления помещений.

Наиболее близкими к заявляемому изобретению являются устройство и способ утилизации тепла дымовых газов (RU 2436011 С1, МПК F22B 1/18 (2006.01), опубл. 10.12.2011).

Устройство утилизации тепла дымовых газов содержит газо-газовый поверхностный пластинчатый теплообменник, выполненный по схеме противотока, поверхностный газовоздушный пластинчатый конденсатор, инерционный каплеуловитель, газоходы, дымосос, воздуховоды, вентиляторы и трубопровод.

Исходные дымовые газы охлаждаются в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы. Греющая и нагреваемая среда движутся противотоком. При этом происходит глубокое охлаждение влажных дымовых газов до температуры, близкой к точке росы водяных паров. Далее содержащиеся в дымовых газах водяные пары конденсируются в газовоздушном поверхностном пластинчатом теплообменнике — конденсаторе, нагревая воздух. Нагретый воздух используется для отопления помещений и покрытия потребности процесса горения. Конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле. Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дополнительным дымососом подмешивается часть подогретых осушенных дымовых газов. Осушенные дымовые газы подаются дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу.

Недостатками этого способа является то, что утилизируется преимущественно скрытая теплота конденсации водяных паров, содержащихся в дымовых газах. Если рекуперативный теплообменник охлаждает исходные дымовые газы до температуры, близкой к точке росы водяных паров, то нагрев уходящих осушенных дымовых газов будет избыточным, что снижает эффективность утилизации. Недостатком является и использование для нагрева только одной среды — воздуха.

Задачей изобретения является повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов.

В предложенном способе глубокой утилизации тепла дымовых газов, также как в прототипе, дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух.

Согласно изобретению между теплообменником и конденсатором дымовые газы доохлаждают до температуры, близкой к точке росы водяных паров, нагревая воду.

Газовые котлы имеют высокую температуру уходящих дымовых газов (130°С для больших энергетических котлов, 150°С-170°С для малых котлов). Для охлаждения дымовых газов перед конденсацией используют два устройства: рекуперативный газо-газовый теплообменник и утилизационный водоподогреватель.

Исходные дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы на 30-40°С выше, чем температура насыщения содержащихся в них водяных паров, для создания запаса по температуре при возможном охлаждении дымовых газов в трубе. Это позволяет уменьшить площадь теплообмена рекуперативного теплообменника по сравнению с прототипом и полезно использовать оставшееся тепло дымовых газов.

Существенным отличием является использование контактного газоводяного водоподогревателя для окончательного охлаждения влажных дымовых газов до температуры, близкой к точке росы водяных паров. На входе в водоподогреватель дымовые газы имеют достаточно высокую температуру (130°С-90°С), что позволяет нагревать воду до 50°С-65°С с частичным ее испарением. На выходе из контактного газоводяного водоподогревателя дымовые газы имеют температуру близкую к точке росы содержащихся в них водяных паров, что повышает эффективность использования поверхности теплообмена в конденсаторе, исключает образование сухих зон конденсатора и повышает коэффициент теплопередачи.

Способ утилизации тепла дымовых газов изображен на фиг.1.

В таблице 1 приведены результаты проверочного расчета варианта установки для котла на природном газе мощностью 11 МВт.

Способ глубокой утилизации тепла дымовых газов осуществляют следующим образом. Исходные дымовые газы 1 предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике 2, нагревая осушенные дымовые газы. Далее дымовые газы 3 окончательно охлаждают в контактном газоводяном водоподогревателе 4 до температуры, близкой к точке росы водяных паров, разбрызгивая воду, в качестве которой целесообразно использовать полученный в конденсаторе конденсат. При этом часть воды испаряется, повышая влагосодержание дымовых газов, а остальная нагревается до этой же температуры. Содержащиеся в дымовых газах 5 водяные пары конденсируют в газовоздушном поверхностном пластинчатом теплообменнике — конденсаторе 6 с каплеуловителем 7, нагревая воздух. Конденсат 8 подается для подогрева в контактный газоводяной водоподогреватель 4. Теплота конденсации используется для подогрева холодного воздуха, который подают вентиляторами 9 из окружающей среды по воздуховоду 10. Нагретый воздух 11 направляют в производственное помещение котельного цеха для его вентиляции и отопления. Из этого помещения воздух подают в котел для обеспечения процесса горения. Осушенные дымовые газы 12 дымососом 13 подают в газо-газовый поверхностный пластинчатый теплообменник 2 для подогрева и направляют в дымовую трубу 14.

Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дымососом 13 подмешивают часть подогретых осушенных дымовых газов 15 (до 10%), величина которой первоначально настраивается заслонкой 16.

Регулирование температуры нагреваемого воздуха 11 осуществляют изменением расхода осушаемых дымовых газов 1 или изменением расхода воздуха, при помощи регулирования числа оборотов дымососа 13 или вентиляторов 9 в зависимости от температуры наружного воздуха.

Теплообменник 2 и конденсатор 6 представляют собой поверхностные пластинчатые теплообменники, выполненные из унифицированных модульных пакетов, которые скомпонованы таким образом, чтобы движение теплоносителей осуществлялось противотоком. В зависимости от объема осушаемых дымовых газов, подогреватель и конденсатор формируются из рассчитываемого количества пакетов. Водоподогреватель 4 представляет собой контактный газоводяной теплообменник, обеспечивающий дополнительное охлаждение дымовых газов и нагрев воды. Нагретая вода 17 после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Блок 9 формируется из нескольких вентиляторов для изменения расхода подогреваемого воздуха.

В таблице 1 приведены результаты поверочного расчета варианта исполнения установки для котла на природном газе мощностью 11 МВт. Расчеты проводились для температуры наружного воздуха -20°С. Расчет показывает, что использование контактного газоводяного водоподогревателя 4 приводит к исчезновению сухой зоны в конденсаторе 6, интенсифицирует теплообмен и увеличивает мощность установки. Процент утилизированного тепла увеличивается с 14,52 до 15,4%, при этом температура точки росы водяных паров в осушенных дымовых газах снижается до 17°С. Примерно 2% тепловой мощности не утилизируется, а используется для рекуперации — нагрева осушенных дымовых газов до температуры 70°С.

Способ глубокой утилизации тепла дымовых газов, по которому дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, доохлаждают в водоподогревателе до температуры, близкой к точке росы водяных паров, нагревая воду, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух, отличающийся тем, что между теплообменником и конденсатором установлен поверхностный трубчатый газоводяной водоподогреватель для охлаждения влажных дымовых газов и нагрева воды, при этом основная утилизация тепла происходит в конденсаторе при нагреве воздуха, а дополнительная — в водоподогревателе.

findpatent.ru

Устройство утилизации тепла дымовых газов и способ его работы

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе. Задачей изобретения является повышение эффективности использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах. Устройство утилизации тепла дымовых газов содержит газо-газовый поверхностный пластинчатый теплообменник, в котором охлаждаются исходные дымовые газы, нагревая противотоком осушенные дымовые газы. Охлажденные влажные дымовые газы подаются в газовоздушный поверхностный пластинчатый теплообменник-конденсатор, где конденсируются содержащиеся в дымовых газах водяные пары, нагревая воздух. Нагретый воздух используется для отопления помещений и покрытия потребности процесса горения газа в котле. Конденсат после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Осушенные дымовые газы подаются дополнительным дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе.

Известна котельная установка, содержащая контактный водонагреватель, подключенный на входе к отводящему газоходу котла, а на выходе через газоотводящий канал, снабженный дымососом к дымовой трубе, и воздухоподогреватель с греющим и воздушным трактами (Авторское свидетельство СССР №1086296, F22B 1/18 от 15.04.1984).

Установка работает следующим образом. Основная часть газов из котла поступает в отводящий газоход, а остальное количество газов — в греющий тракт. Из отводящего газохода газы направляются в контактный водонагреватель, где происходит конденсация водяных паров, содержащихся в дымовых газах. Затем газы проходят через каплеулавливатель и поступают в газоотводящий канал. Наружный воздух поступает в воздухоподогреватель, где нагревается газами, идущими по греющему тракту, и направляется в газоотводящий канал, где смешивается с охлажденными газами и уменьшает влагосодержание последних.

Недостатки. Неприемлемое качество подогретой воды для ее использования в системе отопления. Использование подогретого воздуха только для подачи в дымовую трубу с целью предотвращения конденсации водяных паров. Низкая степень утилизации тепла уходящих газов, так как ставилась основная задача — осушение дымовых газов и снижение температуры точки росы.

Известны серийно выпускаемые Костромским калориферным заводом калориферы типа КСк (Кудинов А.А. Энергосбережение в теплогенерирующих установках. — Ульяновск: УлГТУ, 2000. — 139, стр.33), состоящие из газоводяного поверхностного теплоутилизатора, поверхность теплообмена которого выполнена из оребренных биметаллических трубок, сетчатого фильтра, распределительного клапана, каплеуловителя и гидропневматического обдувочного устройства.

Калориферы типа КСк работают следующим образом. Дымовые газы попадают на распределительный клапан, который делит их на два потока, основной поток газа направляется через сетчатый фильтр в теплоутилизатор, второй — по обводной линии газохода. В теплоутилизаторе водяные пары, содержащиеся в дымовых газах, конденсируются на оребренных трубках, нагревая текущую в них воду. Образующийся конденсат собирается в поддоне и подается насосами в схему подпитки теплосети. Нагретая в теплоутилизаторе вода подается потребителю. На выходе из теплоутилизатора осушенные дымовые газы смешиваются с исходными дымовыми газами из обводной линии газохода и направляются через дымосос в дымовую трубу.

Недостатки. Для работы теплоутилизатора в режиме конденсации всей его конвективной части требуется, чтобы температура нагрева воды в конвективном пакете не превышала 50°С. Для использования такой воды в системах отопления ее нужно дополнительно догревать.

Для предотвращения конденсации остаточных водяных паров дымовых газов в газоходах и дымовой трубе часть исходных газов через обводной канал подмешиваются к осушенным дымовым газам, повышая их температуру. При таком подмесе увеличивается и содержание водяных паров в уходящих дымовых газах, снижая эффективность утилизации тепла.

Известна установка для утилизации тепла дымовых газов (патент РФ №2193727, F22B 1/18, F24H 1/10 от 20.04.2001), содержащая установленные в газоходе ороситель с раздающими соплами, утилизационный теплообменник и теплообменник промежуточного теплоносителя, нагреваемый тракт которого на входе подключен к влагосборнику. Ороситель расположен перед указанными теплообменниками, установленными один напротив другого на одинаковом расстоянии от оросителя, сопла которого направлены в противоположную по отношению к теплообменникам сторону. Установка дополнительно снабжена установленным в газоходе и расположенным над оросителем теплообменником догрева орошающей воды, нагреваемый тракт которого на входе подключен к теплообменнику промежуточного теплоносителя, а на выходе — к оросителю. Все теплообменники являются поверхностными, трубчатыми. Трубки могут быть оребренными, для увеличения поверхности нагрева.

Известен способ работы этой установки (патент РФ №2193728, F22B 1/18, F24H 1/10 от 20.04.2001), по которому проходящие по газоходу дымовые газы охлаждают ниже точки росы и удаляют из установки. В установке нагревают воду в утилизационном теплообменнике и отводят потребителю. Наружную поверхность утилизационного теплообменника орошают промежуточным теплоносителем — водой из оросителя с раздающими соплами, направленными навстречу потоку газов. При этом промежуточный теплоноситель предварительно подогревают в теплообменнике, установленном в газоходе напротив утилизационного теплообменника и на таком же расстоянии от оросителя, что и утилизационный теплообменник. Затем промежуточный теплоноситель подают в установленный в газоходе и расположенный над оросителем теплообменник догрева орошающей воды, догревают до необходимой температуры и направляют в ороситель.

В установке протекают два независимых дуг от друга потока воды: чистой, подогреваемой через теплопередающую поверхность, и орошающей, нагреваемой в результате непосредственного контакта с уходящими газами. Чистый поток воды протекает внутри трубок и отделен стенками от загрязненного потока орошающей воды. Пучок трубок выполняет функцию насадки, предназначенной для создания развитой поверхности контакта орошающей воды и уходящих газов. Наружная поверхность насадки омывается газами и орошающей водой, что интенсифицирует теплообмен в аппарате. Теплота уходящих газов передается воде, протекающей внутри трубок активной насадки, двумя путями: 1) за счет непосредственной передачи теплоты газов и орошающей воды; 2) за счет конденсации на поверхности насадки части водяных паров, содержащихся в газах.

Недостатки. Конечная температура нагреваемой воды на выходе из насадки ограничена температурой мокрого термометра газов. При сжигании природного газа с коэффициентом избытка воздуха 1,0-1,5 температура мокрого термометра уходящих газов составляет 55-65°С. Такая температура не достаточна для использования этой воды в системе отопления.

Из аппарата дымовые газы выходят с относительной влажностью 95-100%, что не исключает возможности конденсации водяных паров из газов в газоотводящем тракте после нее.

Наиболее близким к заявляемому изобретению по использованию, технической сущности и достигаемому техническому результату является теплоутилизатор (патент РФ №2323384, F22B 1/18 от 30.08.2006), содержащий контактный теплообменник, каплеуловитель, газо-газовый теплообменник, включенный по схеме прямотока, газоходы, трубопроводы, насос, датчики температуры, клапаны-регуляторы. По ходу оборотной воды контактного теплообменника последовательно расположены водо-водяной теплообменник и водовоздушный теплообменник с обводным каналом по ходу воздуха.

Способ работы теплоутилизатора. Уходящие газы по газоходу поступают на вход газо-газового теплообменника, последовательно проходя три его секции, затем на вход контактного теплообменника, где, проходя через насадку, омываемую оборотной водой, охлаждаются ниже точки росы, отдавая явное и скрытое тепло оборотной воде. Далее охлажденные и влажные газы освобождаются от большей части унесенной потоком жидкой воды в каплеуловителе, нагреваются и подсушиваются, по меньшей мере, в одной секции газо-газового теплообменника, дымососом направляются в трубу и выбрасываются в атмосферу. Одновременно нагретая оборотная вода из поддона контактного теплообменника насосом подается в водо-водяной теплообменник, где нагревает холодную воду из трубопровода. Нагретая в теплообменнике вода поступает на нужды технологического и бытового горячего водоснабжения или в низкотемпературный отопительный контур.

Далее оборотная вода поступает в водовоздушный теплообменник, нагревает, по меньшей мере, часть дутьевого воздуха, поступающего из-за пределов помещения по воздуховоду, охлаждаясь до минимально возможной температуры, и поступает в контактный теплообменник через водораспределитель, где отбирает тепло от газов, попутно промывая их от взвешенных частиц, и поглощает часть оксидов азота и серы. Нагретый воздух из теплообменника дутьевым вентилятором подается в штатный воздухоподогреватель или непосредственно в топку. Оборотная вода по необходимости фильтруется и обрабатывается известными способами.

Недостатками данного прототипа являются.

Необходимость системы регулирования вследствие использования утилизируемого тепла для целей горячего водоснабжения из-за непостоянства суточного графика потребления горячей воды.

Нагретая в теплообменнике вода, поступающая на нужды горячего водоснабжения или в низкотемпературный отопительный контур, требует ее доведения до необходимой температуры, так как не может быть нагрета в теплообменнике выше температуры воды оборотного контура, которая определяется температурой насыщения водяных паров в дымовых газах. Низкий нагрев воздуха в водовоздушном теплообменнике не позволяет использовать этот воздух для отопления помещений.

Поставлена задача — упрощение технологии утилизации тепла и повышение эффективности использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах.

Эта задача решена следующим способом.

Предложено устройство утилизации тепла дымовых газов, содержащее газо-газовый теплообменник, конденсатор, инерционный каплеуловитель газоходы, воздуховоды, вентиляторы и трубопровод, отличающееся тем, что газо-газовый поверхностный пластинчатый теплообменник выполнен по схеме противотока, в качестве конденсатора установлен поверхностный газовоздушный пластинчатый теплообменник, в газоходе холодных осушенных дымовых газов установлен дополнительный дымосос, перед дополнительным дымососом врезан газоход подмеса части подогретых осушенных дымовых газов.

Предложен также способ работы устройства утилизации тепла дымовых газов, по которому дымовые газы охлаждают в газо-газовом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревают часть дутьевого воздуха, отличающийся тем, что в газо-газовом теплообменнике нагревают осушенные дымовые газы за счет охлаждения исходных дымовых газов по схеме противотока без регулирования расхода газов, конденсируют водяные пары в поверхностном газовоздушном пластинчатом теплообменнике-конденсаторе, нагревая воздух и используют нагретый воздух для отопления и покрытия потребности процесса горения, а конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле, в газоходе холодных осушенных дымовых газов компенсируют аэродинамическое сопротивление газового тракта дополнительным дымососом, перед которым подмешивают часть подогретых осушенных дымовых газов, исключая конденсацию остаточных водяных паров, уносимых потоком из конденсатора, регулирование температуры нагретого воздуха осуществляют при помощи изменения числа оборотов дымососа в зависимости от температуры наружного воздуха.

Исходные дымовые газы охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы.

Отличием является применение поверхностного пластинчатого теплообменника без каких-либо органов регулирования расхода газов, где греющая среда (весь объем влажных дымовых газов) и нагреваемая среда (весь объем осушенных дымовых газов) движутся противотоком. При этом происходит более глубокое охлаждение влажных дымовых газов до температуры, близкой к точке росы водяных паров.

Далее конденсируют содержащиеся в дымовых газах водяные пары в газовоздушном поверхностном пластинчатом теплообменнике-конденсаторе, нагревая воздух. Нагретый воздух используют для отопления помещений и покрытия потребности процесса горения. Конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле.

Отличием предлагаемого способа является то, что нагреваемой средой является холодный воздух, подаваемый вентиляторами из окружающей среды. Воздух нагревается на 30-50°С, например от -15 до 33°С. Использование воздуха с отрицательной температурой в качестве охлаждающей среды позволяет существенно увеличить температурный напор в конденсаторе при использовании противотока. Воздух, нагретый до 28-33°С, пригоден для целей отопления помещений и подачи в котел для обеспечения процесса горения природного газа. Тепловой расчет схемы показывает, что расход подогретого воздуха в 6-7 раз превосходит расход исходных дымовых газов, что позволяет полностью покрыть потребность котла, отапливать цех и другие помещения предприятия, а также подать часть воздуха в дымовую трубу для снижения температуры точки росы или стороннему потребителю.

Аэродинамическое сопротивление газового тракта в газоходе холодных осушенных дымовых газов компенсируют дополнительным дымососом. Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дополнительным дымососом подмешивают часть подогретых осушенных дымовых газов (до 10%). Регулирование температуры нагреваемого воздуха осуществляют изменением расхода осушаемых дымовых газов, при помощи регулирования числа оборотов дымососа в зависимости от температуры наружного воздуха.

Осушенные дымовые газы подаются дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу.

Устройство утилизации тепла дымовых газов, изображенное на чертеже, содержит газоход 1, соединенный с теплообменником 2, который через газоход 3 соединен с конденсатором 4. Конденсатор 4 имеет инерционный каплеуловитель 5 и соединен с трубопроводом отвода конденсата 6. Вентилятор 7 соединен воздуховодом холодного воздуха 8 с конденсатором 4. Конденсатор 4 соединен воздуховодом 9 с потребителем тепла. Газоход осушенных дымовых газов 10 через дымосос 11 соединен с теплообменником 2. Газоход сухих подогретых дымовых газов 12 соединен с теплообменником 2 и направлен в дымовую трубу. Газоход 12 соединен с газоходом 10 дополнительным газоходом 13, который содержит заслонку 14.

Теплообменник 2 и конденсатор 4 представляют собой поверхностные пластинчатые теплообменники, выполненные из унифицированных модульных пакетов, которые скомпонованы таким образом, чтобы движение теплоносителей осуществлялось противотоком. В зависимости от объема осушаемых дымовых газов, подогреватель и конденсатор формируются из рассчитываемого количества пакетов. Блок 7 формируется из нескольких вентиляторов для изменения расхода подогреваемого воздуха. Конденсатор 4 на выходе осушенных дымовых газов имеет инерционный каплеуловитель 5, выполненный в виде вертикальных жалюзей, за которым врезан газоход 10. На газоходе 13 установлена заслонка 14 для первоначальной настройки температурного запаса, предотвращающего конденсацию остаточных водяных паров в дымососе 11.

Способ работы устройства утилизации тепла дымовых газов.

Влажные дымовые газы по газоходу 1 поступают в теплообменник 2, где их температура снижается до температуры, близкой к точке росы. Охлажденные дымовые газы по газоходу 3 попадают в конденсатор 4, где конденсируются содержащиеся в них водяные пары. Конденсат отводится по трубопроводу 6 и после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Теплота конденсации используется для подогрева холодного воздуха, который подается вентиляторами 7 из окружающей среды. Нагретый воздух 9 направляется в производственное помещение котельной, для его вентиляции и отопления. Из этого помещения воздух подается в котел, для обеспечения процесса горения. Осушенные дымовые газы 10 проходят через инерционный каплеуловитель 5, дымососом 11 подаются в теплообменник 2, где нагреваются и направляются в дымовую трубу 12. Нагрев осушенных дымовых газов необходим для предотвращения конденсации остаточных водяных паров в газоходах и дымовой трубе. Для предотвращения выпадения капель влаги в дымососе 11, уносимых осушенным потоком дымовых газов из конденсатора, часть нагретых сухих дымовых газов (до одной десятой части) из газохода 12 по газоходу 13 подается в газоход 10, где происходит испарение уносимой влаги.

Регулирование температуры нагретого воздуха осуществляют изменением расхода осушаемых дымовых газов при помощи изменения числа оборотов дымососа 11 в зависимости от температуры наружного воздуха. При снижении расхода влажных дымовых газов уменьшается аэродинамическое сопротивление газового тракта устройства, что компенсируется снижением числа оборотов дымососа 11. Дымосос 11 обеспечивает разницу давлений дымовых газов и воздуха в конденсаторе с целью предотвращения попадания дымовых газов в подогреваемый воздух.

Поверочный расчет показывает, что для котла на природном газе мощностью 6 МВт, при расходе влажных дымовых газов 1 м3/с с температурой 130°С, воздух нагревается от -15 до 30°С, при его расходе 7 м3/с. Расход конденсата 0,13 кг/с, температура осушенных дымовых газов на выходе из подогревателя 86°С. Тепловая мощность такого устройства 400 кВт. Общая площадь поверхности теплообмена 310 м2. Температура точки росы водяных паров в дымовых газах снижается с 55 до 10°С. КПД котла увеличивается на 1% только за счет подогрева холодного воздуха в количестве 0,9 м3/с, требуемого для горения природного газа. При этом, на подогрев этого воздуха приходится 51 кВт мощности устройства, а остальное тепло используется для воздушного отопления помещений. Результаты расчетов работы такого устройства при различных температурах наружного воздуха приведены в таблице 1.

В таблице 2 приведены результаты расчета вариантов исполнения устройства на другие расходы осушаемых дымовых газов, при температуре наружного воздуха -15°С.

Таблица 1
УСТРОЙСТВО УТИЛИЗАЦИИ ТЕПЛА ДЫМОВЫХ ГАЗОВ И СПОСОБ ЕГО РАБОТЫ
Расход дымовых газовРасход воздухаТемпература воздухаТепловая мощность устройстваРасход полученного конденсатаТемпература осушенных дымовых газовТемпература точки росы водяных паров в осушенных газах
допосле
м3/cм3/c°С°СкВткг/с°C°С
0,75,4037,02620,0990,719/8
0,86/2-533,23160,1089,016,2
17,0-1033,23880,1387/415,1
17,0-1529,64010,1386,010,0
16,2-2030,24020,1386,310,8
16,2-2526,64130,1384,85,5
Таблица 2
Расход дымовых газовРасход воздухаТемпература нагретого воздухаТепловая мощность устройстваРасход полученного конденсатаОбщая площадь поверхности теплообменаТемпература осушенных дымовых газовТемпература точки росы водяных паров в осушенных газах
м3/cм3/c°СкВткг/см2°C°С
213,231,57910,2662086,812,8
535,029,620070,65155286,010,0
1062,135,640471,30344483,89,2
25155,332,995823,08826586,318,6
50310,832,5190096,081377585,620,0

1. Устройство утилизации тепла дымовых газов, содержащее газо-газовый теплообменник, конденсатор, инерционный каплеуловитель, газоходы, воздуховоды, вентиляторы и трубопровод, отличающееся тем, что газо-газовый поверхностный пластинчатый теплообменник выполнен по схеме противотока, в качестве конденсатора установлен поверхностный газо-воздушный пластинчатый теплообменник, в газоходе холодных осушенных дымовых газов установлен дополнительный дымосос, перед дополнительным дымососом врезан газоход подмеса части подогретых осушенных дымовых газов.

2. Способ работы устройства утилизации тепла дымовых газов, по которому дымовые газы охлаждают в газо-газовом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревают часть дутьевого воздуха, отличающийся тем, что в газо-газовом теплообменнике нагревают осушенные дымовые газы за счет охлаждения исходных дымовых газов по схеме противотока без регулирования расхода газов, конденсируют водяные пары в поверхностном газовоздушном пластинчатом теплообменнике-конденсаторе, нагревая воздух и используют нагретый воздух для отопления и покрытия потребности процесса горения, а конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле, в газоходе холодных осушенных дымовых газов компенсируют аэродинамическое сопротивление газового тракта дополнительным дымососом, перед которым подмешивают часть подогретых осушенных дымовых газов, исключая конденсацию остаточных водяных паров, уносимых потоком из конденсатора, регулирование температуры нагретого воздуха осуществляют при помощи изменения числа оборотов дымососа в зависимости от температуры наружного воздуха.

findpatent.ru

Дымовые газы утилизация тепла — Справочник химика 21


    В Советском Союзе запроектирована комбинированная установка Г-43-107. В ее состав входят следующие секции гидроочистки вакуумного дистиллята (фракции 350—500°С) каталитического крекинга гидроочищенного сырья и ректификации стабилизации бензина и газофракционирования утилизации тепла дымовых газов и очистки дымовых газов регенерации (включая электрофильтры). В проект этой установки внесено много усовершенствований по сравнению с установками, уже находящимися в эксплуатации. Кроме того, комбинирование ряда процессов позволило оптимально использовать тепло технологических потоков. Этим же объясняется и значительная выдача пара с такой установки на сторону. Ниже приведен примерный материальный баланс работы установки Г-43-107  [c.102]

    Утилизация тепла дымовых газов. Для использования тепла дымовых газов на рассматриваемой установке установлены котлы-утилизаторы. Ниже приведена основная теплотехническая и конструктивная характеристика эксплуатируемого на установке котла-утилизатора КУ-125  [c.64]

    УТИЛИЗАЦИЯ ТЕПЛА ДЫМОВЫХ ГАЗОВ [c.548]

    Использование вторичных энергетических ресурсов — утилизация отходящих дымовых газов и тепла нагревательных установок, тепла экзотермических реакций, вторичное использование греющего пара, максимальное использование изоляционных и экранирующих устройств, предотвращение теплопотерь, повторное использование воды и т. п. [c.50]

    Отработанные дымовые газы, содержащие продукты неполного сгорания и коксовую пыль, при высокой температуре 1200-1400 °С отсасываются и направляются в дымоход. При движении по горизонтальному участку дымохода газы отдают тепло последовательно встроенным в дымоход змеевикам котла-утилизатора, воздухоподогревателя и экономайзера. Охлажденные до безопасной температуры 200-250 °С (разбавлением атмосферным воздухом) дымовые газы поступают на прием дымососа. При этом обеспечивается наиболее полная утилизация тепла. [c.82]

    Т а б л и ц а 43. Утилизация тепла дымовых газов печей установки ЭЛОУ-АВТ производительностью 3 млн. т/год сернистой нефти [c.219]

    Степень нспользования тепловых ВЭР составляет в среднем менее 50% потенциала. Оборудование для утилизации тепла отходящих дымовых газов подвергается сильной сероводородной коррозии, так как основное топливо в печах — мазут с содержанием серы 2—2,5%. За рубежом используют регенеративные вращающиеся воздухоподогреватели, способные работать в условиях сероводородной коррозии. Опыт эксплуатации такого воздухоподогревателя в СССР на установке Л-35-11/600 показал, что в результате утилизации тепловых ВЭР можно экономить 6 тыс. т у. т. [c.169]


    Регенерация катализатора проводится в двухступенчатом регенераторе 5. Двухступенчатая конструкция регенератора позволяет снизить температуру регенерации катализатора при выжиге кокса. Большая часть кокса выгорает в первой ступени регенератора. После этого частично регенерированный катализатор самотеком поступает во вторую ступень, где происходит дожиг остаточного кокса. Дымовые газы второй ступени выводятся из регенератора через его первую ступень, что позволяет более эффективно использовать кислород, подаваемый на регенерацию катализатора. Дополнительное регулирование температуры достигается также за счет использования холодильника катализатора в плотной фазе 6. В схеме имеется устройство для утилизации тепла дымовых газов. [c.9]

    Для крекинга остатков с высоким содержанием асфальтенов используется холодильник катализатора з плотной фазе. Предусмотрена система утилизации тепла и давления дымовых газов регенерации. [c.12]

    В состав комбинированной установки Г43-107 входят блоки гидроочистки вакуумного дистиллята, каталитического крекинга гидроочищенного сырья и ректификации, стабилизации бензина и га

www.chem21.info

Утилизация тепла дымовых газов: экология с выгодой

В поисках способов повышения эффективности предприятий энергетического сектора, а также других промышленных объектов, на которых используется оборудование, сжигающее ископаемое топливо (паровые, водогрейные котлы, технологические печи и т.д.), вопрос использования потенциала дымовых газов поднимается не в самую первую очередь.

Между тем, опираясь на существующие нормы расчёта, разработанные десятки лет назад, и сложившиеся стандарты выбора ключевых показателей работы подобного оборудования, эксплуатирующие организации теряют деньги, выпуская их в прямом смысле в трубу, попутно ухудшая экологическую обстановку в глобальном масштабе.

Если, как и команда «Первого инженера», вы считаете неправильным упускать возможность позаботиться об окружающей среде и здоровье жителей вашего города с выгодой для бюджета предприятия, читайте статью о том, как превратить дымовые газы в энергоресурс.  

Изучаем стандарты

Ключевой параметр, определяющий КПД котельного агрегата, – температура уходящих газов. Тепло, теряемое с уходящими газами, составляет значительную часть всех тепловых потерь (наряду с потерями тепла от химического и механического недожога топлива, потерями с физическим теплом шлаков, а также утечек тепла в окружающую среду вследствие наружного охлаждения). Эти потери оказывают решающее влияние на экономичность работы котла, снижая его КПД. Таким образом, мы понимаем, что чем ниже температура дымовых газов, тем выше эффективность котла.

Оптимальная температура уходящих газов для разных видов топлива и рабочих параметров котла определяется на основании технико-экономических расчётов на самом раннем этапе его создания. При этом максимально полезное использование тепла уходящих газов традиционно достигается за счёт увеличения размеров конвективных поверхностей нагрева, а также развития хвостовых поверхностей – водяных экономайзеров, регенеративных воздухоподогревателей.

Но даже несмотря на внедрение технологий и оборудования для наиболее полной утилизации тепла, температура уходящих газов согласно действующей нормативной документации должна находиться в диапазоне:

  • 120-180 °С для котлов на твёрдом топливе (в зависимости от влажности топлива и рабочих параметров котла),
  • 120-160 °С для котлов на мазуте (в зависимости от содержания в нём серы),
  • 120-130 °С для котлов на природном газе.

Указанные значения определены с учетом факторов экологической безопасности, но в первую очередь, исходя из требований к работоспособности и долговечности оборудования.

Так, минимальный порог задаётся таким образом, чтобы исключить риск выпадения конденсата в конвективной части котла и далее по тракту (в газоходах и дымовой трубе). Однако для предупреждения коррозии вовсе не обязательно жертвовать теплом, которое выбрасывается в атмосферу вместо того, чтобы совершать полезную работу.

Коррозия. Исключаем риски

Не спорим, коррозия – явление неприятное, способное поставить под угрозу обеспечение безопасной работы котельной установки и существенно сократить назначенный ей срок эксплуатации.

При охлаждении дымовых газов до температуры точки росы и ниже, происходит конденсация водяных паров, вместе с которыми переходят в жидкое состояние и соединения NOx, SOx, которые, вступая в реакцию с водой, образуют кислоты, разрушительно воздействующие на внутренние поверхности котла. В зависимости от типа сжигаемого топлива, температура кислотной точки росы может быть различной, как и состав кислот, выпадающих в виде конденсата. Результат, тем не менее, один – коррозия.

Уходящие газы котлов, работающих на природном газе, в основном состоят из следующих продуктов сгорания: водяных паров (Н2О), углекислого газа (СО2), угарного газа (СО) и несгоревших горючих углеводородов СnHm (два последних появляются при неполном сгорании топлива, когда режим горения не отлажен).

Поскольку в атмосферном воздухе содержится большое количество азота, среди прочего, в продуктах сгорания появляются оксиды азота NO и NO2, обобщённо именуемые NOx, пагубно воздействующие на окружающую среду и здоровье человека. Соединяясь с водой, оксиды азота и образуют коррозионно-активную азотную кислоту.

При сжигании мазута и угля в продуктах сгорания появляются оксиды серы, именуемые SOx. Их негативное воздействие на окружающую среду также широко исследовано и не подвергается сомнению. Образующийся при взаимодействии с водой кислый конденсат вызывает сернистую коррозию поверхностей нагрева.

Традиционно, температура уходящих газов, как было показано выше, выбирается таким образом, чтобы защитить оборудование от выпадения кислоты на поверхностях нагрева котла. Более того, температура газов должна обеспечить конденсацию NOx и SOx за пределами газового тракта с тем, чтобы защитить от коррозионных процессов не только сам котёл, но и газоходы с дымовой трубой. Конечно, существуют определённые нормы, ограничивающие допустимые концентрации выбросов оксидов азота и серы, но это нисколько не отменяет факт накопления этих продуктов сгорания в атмосфере Земли и выпадение их в виде кислотных осадков на её поверхность.

Сера, содержащаяся в мазуте и угле, а также унос не сгоревших частиц твёрдого топлива (в том числе золы) накладывают дополнительные условия по очистке дымовых газов. Применение систем газоочистки значительно удорожает и усложняет процесс утилизации тепла дымовых газов, делая подобные мероприятия слабо привлекательными с экономической точки зрения, а зачастую практически не окупаемыми.

В некоторых случаях местные органы власти устанавливают минимальную температуру дымовых газов в устье трубы с целью обеспечения адекватного рассеяния уходящих газов и отсутствия дымового факела. Кроме того, некоторые предприятия могут по собственной инициативе применять подобную практику для улучшения своего имиджа, поскольку широкая общественность зачастую интерпретирует наличие видимого дымового факела как признак загрязнения окружающей среды, в то время как отсутствие дымового факела может рассматриваться как признак чистого производства.

Всё это приводит к тому, что при определённых погодных условиях предприятия могут специально подогревать дымовые газы перед выбросом их в атмосферу. Хотя, понимая состав уходящих газов котла, работающего на природном газе (он детально разобран выше), становится очевидно, что белый «дым», который идёт из трубы (при правильной настройке режима горения), – это по большей части пары воды, образующиеся в результате реакции горения природного газа в топке котла.

Борьба с коррозией требует применения материалов, устойчивых к её негативному воздействию (такие материалы существуют и могут применяться на установках, использующих в качестве топлива газ, продукты нефтепереработки и даже отходы), а также организацию сбора, переработки кислого конденсата и его утилизации.

Технология

Внедрение комплекса мер по снижению температуры дымовых газов за котлом на существующем предприятии обеспечивает увеличение КПД всей установки, в состав которой входит котельный агрегат, используя, прежде всего, сам котёл (тепло, вырабатываемое в нём).

Концепция таких решений, по своей сути, сводится к одному: на участке газохода до дымовой трубы монтируется теплообменник, воспринимающий тепло дымовых газов охлаждающей средой (например, водой). Эта вода может быть, как непосредственно конечным теплоносителем, который необходимо нагреть, так и промежуточным агентом, который передаёт тепло посредством дополнительного теплообменного оборудования другому контуру.

Принципиальная схема представлена на рисунке:

Сбор образующегося конденсата происходит непосредственно в объёме нового теплообменного аппарата, который выполняется из коррозионно-устойчивых материалов. Это обусловлено тем, что порог температуры точки росы для влаги, содержащейся в объёме уходящих газов, преодолевается именно внутри теплообменника. Таким образом, полезно используется не только физическое тепло дымовых газов, но и скрытая теплота конденсации содержащихся в них водяных паров. Сам же аппарат должен рассчитываться таким образом, чтобы его конструктив не оказывал чрезмерного аэродинамического сопротивления и, как следствие, ухудшения условий работы котельного агрегата.

Конструкция теплообменного аппарата может представлять собой либо обычный рекуперативный теплообменник, где перенос тепла от газов к жидкости происходит через разделяющую стенку, либо контактный теплообменник, в котором дымовые газы непосредственно вступают в контакт с водой, которая разбрызгивается форсунками в их потоке.

Для рекуперативного теплообменника решение вопроса по кислотному конденсату сводится к организации его сбора и нейтрализации. В случае же с контактным теплообменником применяется несколько иной подход, в чём-то сходный с периодической продувкой системы оборотного водоснабжения: по мере увеличения кислотности циркулирующей жидкости, некоторое её количество отбирается в накопительный бак, где происходит обработка реагентами с последующей утилизацией воды в дренажную канализацию, либо направлением её в технологический цикл.

Отдельные применения энергии дымовых газов могут быть ограничены вследствие разницы между температурой газов и потребностями в определённой температуре на входе энергопотребляющего процесса. Однако и для таких, казалось бы, тупиковых ситуаций разработан подход, который опирается на качественно новые технологии и оборудование.

С целью повышения эффективности процесса утилизации тепла дымовых газов в мировой практике в качестве ключевого элемента системы всё чаще применяются инновационные решения на базе тепловых насосов. В отдельных секторах промышленности (например, в биоэнергетике) такие решения применяются на большинстве вводимых в эксплуатацию котлов. Дополнительная экономия первичных энергоресурсов в этом случае достигается за счёт применения не традиционных парокомпрессионных электрических машин, а более надёжных и технологичных абсорбционных бромисто-литиевых тепловых насосов (АБТН), которым для работы нужна не электроэнергия, а тепло (зачастую это может быть не используемое бросовое тепло, которое в избытке присутствует практически на любом предприятии). Такое тепло стороннего греющего источника активизирует внутренний цикл АБТН, который позволяет преобразовывать располагаемый температурный потенциал уходящих газов, и передавать его более нагретым средам.

Результат

Охлаждение уходящих газов котла с применением подобных решений может быть достаточно глубоким – до 30 и даже 20 °С с первоначальных 120-130 °С. Полученного тепла вполне достаточно, чтобы подогреть воду для нужд химводоподготовки, подпитки, горячего водоснабжения и даже теплосети.

Экономия топлива при этом может достигать 5÷10 %, а повышение КПД котельного агрегата – 2÷3 %.

Таким образом, внедрение описанной технологии позволяет решать сразу несколько задач. Это:

  • максимально полное и полезное использование тепла дымовых газов (а также скрытой теплоты конденсации водяных паров),
  • снижение объёма выбросов NOx и SOx в атмосферу,
  • получение дополнительного ресурса – очищенной воды (которому найдётся полезное применение на любом предприятии, например, в качестве подпитки теплосети и других водяных контуров),
  • ликвидация дымового факела (он становится едва различимым или исчезает вовсе).

Практика показывает, что целесообразность применения подобных решений в первую очередь зависит от:

  • возможности полезной утилизации имеющегося тепла дымовых газов,
  • продолжительности использования полученной тепловой энергии в году,
  • стоимости энергоресурсов на предприятии,
  • наличия превышения предельно допустимой концентрации выбросов по NOx и SOx (а также от строгости местного экологического законодательства),
  • способа нейтрализации конденсата и вариантов его дальнейшего использования.

Автор: Валентин

Источник

www.pvsm.ru

устройство утилизации тепла дымовых газов и способ его работы — патент РФ 2436011

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе. Задачей изобретения является повышение эффективности использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах. Устройство утилизации тепла дымовых газов содержит газо-газовый поверхностный пластинчатый теплообменник, в котором охлаждаются исходные дымовые газы, нагревая противотоком осушенные дымовые газы. Охлажденные влажные дымовые газы подаются в газовоздушный поверхностный пластинчатый теплообменник-конденсатор, где конденсируются содержащиеся в дымовых газах водяные пары, нагревая воздух. Нагретый воздух используется для отопления помещений и покрытия потребности процесса горения газа в котле. Конденсат после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Осушенные дымовые газы подаются дополнительным дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу. 2 н.п. ф-лы, 1 ил.

Рисунки к патенту РФ 2436011

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе.

Известна котельная установка, содержащая контактный водонагреватель, подключенный на входе к отводящему газоходу котла, а на выходе через газоотводящий канал, снабженный дымососом к дымовой трубе, и воздухоподогреватель с греющим и воздушным трактами (Авторское свидетельство СССР № 1086296, F22B 1/18 от 15.04.1984).

Установка работает следующим образом. Основная часть газов из котла поступает в отводящий газоход, а остальное количество газов — в греющий тракт. Из отводящего газохода газы направляются в контактный водонагреватель, где происходит конденсация водяных паров, содержащихся в дымовых газах. Затем газы проходят через каплеулавливатель и поступают в газоотводящий канал. Наружный воздух поступает в воздухоподогреватель, где нагревается газами, идущими по греющему тракту, и направляется в газоотводящий канал, где смешивается с охлажденными газами и уменьшает влагосодержание последних.

Недостатки. Неприемлемое качество подогретой воды для ее использования в системе отопления. Использование подогретого воздуха только для подачи в дымовую трубу с целью предотвращения конденсации водяных паров. Низкая степень утилизации тепла уходящих газов, так как ставилась основная задача — осушение дымовых газов и снижение температуры точки росы.

Известны серийно выпускаемые Костромским калориферным заводом калориферы типа КСк (Кудинов А.А. Энергосбережение в теплогенерирующих установках. — Ульяновск: УлГТУ, 2000. — 139, стр.33), состоящие из газоводяного поверхностного теплоутилизатора, поверхность теплообмена которого выполнена из оребренных биметаллических трубок, сетчатого фильтра, распределительного клапана, каплеуловителя и гидропневматического обдувочного устройства.

Калориферы типа КСк работают следующим образом. Дымовые газы попадают на распределительный клапан, который делит их на два потока, основной поток газа направляется через сетчатый фильтр в теплоутилизатор, второй — по обводной линии газохода. В теплоутилизаторе водяные пары, содержащиеся в дымовых газах, конденсируются на оребренных трубках, нагревая текущую в них воду. Образующийся конденсат собирается в поддоне и подается насосами в схему подпитки теплосети. Нагретая в теплоутилизаторе вода подается потребителю. На выходе из теплоутилизатора осушенные дымовые газы смешиваются с исходными дымовыми газами из обводной линии газохода и направляются через дымосос в дымовую трубу.

Недостатки. Для работы теплоутилизатора в режиме конденсации всей его конвективной части требуется, чтобы температура нагрева воды в конвективном пакете не превышала 50°С. Для использования такой воды в системах отопления ее нужно дополнительно догревать.

Для предотвращения конденсации остаточных водяных паров дымовых газов в газоходах и дымовой трубе часть исходных газов через обводной канал подмешиваются к осушенным дымовым газам, повышая их температуру. При таком подмесе увеличивается и содержание водяных паров в уходящих дымовых газах, снижая эффективность утилизации тепла.

Известна установка для утилизации тепла дымовых газов (патент РФ № 2193727, F22B 1/18, F24H 1/10 от 20.04.2001), содержащая установленные в газоходе ороситель с раздающими соплами, утилизационный теплообменник и теплообменник промежуточного теплоносителя, нагреваемый тракт которого на входе подключен к влагосборнику. Ороситель расположен перед указанными теплообменниками, установленными один напротив другого на одинаковом расстоянии от оросителя, сопла которого направлены в противоположную по отношению к теплообменникам сторону. Установка дополнительно снабжена установленным в газоходе и расположенным над оросителем теплообменником догрева орошающей воды, нагреваемый тракт которого на входе подключен к теплообменнику промежуточного теплоносителя, а на выходе — к оросителю. Все теплообменники являются поверхностными, трубчатыми. Трубки могут быть оребренными, для увеличения поверхности нагрева.

Известен способ работы этой установки (патент РФ № 2193728, F22B 1/18, F24H 1/10 от 20.04.2001), по которому проходящие по газоходу дымовые газы охлаждают ниже точки росы и удаляют из установки. В установке нагревают воду в утилизационном теплообменнике и отводят потребителю. Наружную поверхность утилизационного теплообменника орошают промежуточным теплоносителем — водой из оросителя с раздающими соплами, направленными навстречу потоку газов. При этом промежуточный теплоноситель предварительно подогревают в теплообменнике, установленном в газоходе напротив утилизационного теплообменника и на таком же расстоянии от оросителя, что и утилизационный теплообменник. Затем промежуточный теплоноситель подают в установленный в газоходе и расположенный над оросителем теплообменник догрева орошающей воды, догревают до необходимой температуры и направляют в ороситель.

В установке протекают два независимых дуг от друга потока воды: чистой, подогреваемой через теплопередающую поверхность, и орошающей, нагреваемой в результате непосредственного контакта с уходящими газами. Чистый поток воды протекает внутри трубок и отделен стенками от загрязненного потока орошающей воды. Пучок трубок выполняет функцию насадки, предназначенной для создания развитой поверхности контакта орошающей воды и уходящих газов. Наружная поверхность насадки омывается газами и орошающей водой, что интенсифицирует теплообмен в аппарате. Теплота уходящих газов передается воде, протекающей внутри трубок активной насадки, двумя путями: 1) за счет непосредственной передачи теплоты газов и орошающей воды; 2) за счет конденсации на поверхности насадки части водяных паров, содержащихся в газах.

Недостатки. Конечная температура нагреваемой воды на выходе из насадки ограничена температурой мокрого термометра газов. При сжигании природного газа с коэффициентом избытка воздуха 1,0-1,5 температура мокрого термометра уходящих газов составляет 55-65°С. Такая температура не достаточна для использования этой воды в системе отопления.

Из аппарата дымовые газы выходят с относительной влажностью 95-100%, что не исключает возможности конденсации водяных паров из газов в газоотводящем тракте после нее.

Наиболее близким к заявляемому изобретению по использованию, технической сущности и достигаемому техническому результату является теплоутилизатор (патент РФ № 2323384, F22B 1/18 от 30.08.2006), содержащий контактный теплообменник, каплеуловитель, газо-газовый теплообменник, включенный по схеме прямотока, газоходы, трубопроводы, насос, датчики температуры, клапаны-регуляторы. По ходу оборотной воды контактного теплообменника последовательно расположены водо-водяной теплообменник и водовоздушный теплообменник с обводным каналом по ходу воздуха.

Способ работы теплоутилизатора. Уходящие газы по газоходу поступают на вход газо-газового теплообменника, последовательно проходя три его секции, затем на вход контактного теплообменника, где, проходя через насадку, омываемую оборотной водой, охлаждаются ниже точки росы, отдавая явное и скрытое тепло оборотной воде. Далее охлажденные и влажные газы освобождаются от большей части унесенной потоком жидкой воды в каплеуловителе, нагреваются и подсушиваются, по меньшей мере, в одной секции газо-газового теплообменника, дымососом направляются в трубу и выбрасываются в атмосферу. Одновременно нагретая оборотная вода из поддона контактного теплообменника насосом подается в водо-водяной теплообменник, где нагревает холодную воду из трубопровода. Нагретая в теплообменнике вода поступает на нужды технологического и бытового горячего водоснабжения или в низкотемпературный отопительный контур.

Далее оборотная вода поступает в водовоздушный теплообменник, нагревает, по меньшей мере, часть дутьевого воздуха, поступающего из-за пределов помещения по воздуховоду, охлаждаясь до минимально возможной температуры, и поступает в контактный теплообменник через водораспределитель, где отбирает тепло от газов, попутно промывая их от взвешенных частиц, и поглощает часть оксидов азота и серы. Нагретый воздух из теплообменника дутьевым вентилятором подается в штатный воздухоподогреватель или непосредственно в топку. Оборотная вода по необходимости фильтруется и обрабатывается известными способами.

Недостатками данного прототипа являются.

Необходимость системы регулирования вследствие использования утилизируемого тепла для целей горячего водоснабжения из-за непостоянства суточного графика потребления горячей воды.

Нагретая в теплообменнике вода, поступающая на нужды горячего водоснабжения или в низкотемпературный отопительный контур, требует ее доведения до необходимой температуры, так как не может быть нагрета в теплообменнике выше температуры воды оборотного контура, которая определяется температурой насыщения водяных паров в дымовых газах. Низкий нагрев воздуха в водовоздушном теплообменнике не позволяет использовать этот воздух для отопления помещений.

Поставлена задача — упрощение технологии утилизации тепла и повышение эффективности использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах.

Эта задача решена следующим способом.

Предложено устройство утилизации тепла дымовых газов, содержащее газо-газовый теплообменник, конденсатор, инерционный каплеуловитель газоходы, воздуховоды, вентиляторы и трубопровод, отличающееся тем, что газо-газовый поверхностный пластинчатый теплообменник выполнен по схеме противотока, в качестве конденсатора установлен поверхностный газовоздушный пластинчатый теплообменник, в газоходе холодных осушенных дымовых газов установлен дополнительный дымосос, перед дополнительным дымососом врезан газоход подмеса части подогретых осушенных дымовых газов.

Предложен также способ работы устройства утилизации тепла дымовых газов, по которому дымовые газы охлаждают в газо-газовом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревают часть дутьевого воздуха, отличающийся тем, что в газо-газовом теплообменнике нагревают осушенные дымовые газы за счет охлаждения исходных дымовых газов по схеме противотока без регулирования расхода газов, конденсируют водяные пары в поверхностном газовоздушном пластинчатом теплообменнике-конденсаторе, нагревая воздух и используют нагретый воздух для отопления и покрытия потребности процесса горения, а конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле, в газоходе холодных осушенных дымовых газов компенсируют аэродинамическое сопротивление газового тракта дополнительным дымососом, перед которым подмешивают часть подогретых осушенных дымовых газов, исключая конденсацию остаточных водяных паров, уносимых потоком из конденсатора, регулирование температуры нагретого воздуха осуществляют при помощи изменения числа оборотов дымососа в зависимости от температуры наружного воздуха.

Исходные дымовые газы охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы.

Отличием является применение поверхностного пластинчатого теплообменника без каких-либо органов регулирования расхода газов, где греющая среда (весь объем влажных дымовых газов) и нагреваемая среда (весь объем осушенных дымовых газов) движутся противотоком. При этом происходит более глубокое охлаждение влажных дымовых газов до температуры, близкой к точке росы водяных паров.

Далее конденсируют содержащиеся в дымовых газах водяные пары в газовоздушном поверхностном пластинчатом теплообменнике-конденсаторе, нагревая воздух. Нагретый воздух используют для отопления помещений и покрытия потребности процесса горения. Конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле.

Отличием предлагаемого способа является то, что нагреваемой средой является холодный воздух, подаваемый вентиляторами из окружающей среды. Воздух нагревается на 30-50°С, например от -15 до 33°С. Использование воздуха с отрицательной температурой в качестве охлаждающей среды позволяет существенно увеличить температурный напор в конденсаторе при использовании противотока. Воздух, нагретый до 28-33°С, пригоден для целей отопления помещений и подачи в котел для обеспечения процесса горения природного газа. Тепловой расчет схемы показывает, что расход подогретого воздуха в 6-7 раз превосходит расход исходных дымовых газов, что позволяет полностью покрыть потребность котла, отапливать цех и другие помещения предприятия, а также подать часть воздуха в дымовую трубу для снижения температуры точки росы или стороннему потребителю.

Аэродинамическое сопротивление газового тракта в газоходе холодных осушенных дымовых газов компенсируют дополнительным дымососом. Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дополнительным дымососом подмешивают часть подогретых осушенных дымовых газов (до 10%). Регулирование температуры нагреваемого воздуха осуществляют изменением расхода осушаемых дымовых газов, при помощи регулирования числа оборотов дымососа в зависимости от температуры наружного воздуха.

Осушенные дымовые газы подаются дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу.

Устройство утилизации тепла дымовых газов, изображенное на чертеже, содержит газоход 1, соединенный с теплообменником 2, который через газоход 3 соединен с конденсатором 4. Конденсатор 4 имеет инерционный каплеуловитель 5 и соединен с трубопроводом отвода конденсата 6. Вентилятор 7 соединен воздуховодом холодного воздуха 8 с конденсатором 4. Конденсатор 4 соединен воздуховодом 9 с потребителем тепла. Газоход осушенных дымовых газов 10 через дымосос 11 соединен с теплообменником 2. Газоход сухих подогретых дымовых газов 12 соединен с теплообменником 2 и направлен в дымовую трубу. Газоход 12 соединен с газоходом 10 дополнительным газоходом 13, который содержит заслонку 14.

Теплообменник 2 и конденсатор 4 представляют собой поверхностные пластинчатые теплообменники, выполненные из унифицированных модульных пакетов, которые скомпонованы таким образом, чтобы движение теплоносителей осуществлялось противотоком. В зависимости от объема осушаемых дымовых газов, подогреватель и конденсатор формируются из рассчитываемого количества пакетов. Блок 7 формируется из нескольких вентиляторов для изменения расхода подогреваемого воздуха. Конденсатор 4 на выходе осушенных дымовых газов имеет инерционный каплеуловитель 5, выполненный в виде вертикальных жалюзей, за которым врезан газоход 10. На газоходе 13 установлена заслонка 14 для первоначальной настройки температурного запаса, предотвращающего конденсацию остаточных водяных паров в дымососе 11.

Способ работы устройства утилизации тепла дымовых газов.

Влажные дымовые газы по газоходу 1 поступают в теплообменник 2, где их температура снижается до температуры, близкой к точке росы. Охлажденные дымовые газы по газоходу 3 попадают в конденсатор 4, где конденсируются содержащиеся в них водяные пары. Конденсат отводится по трубопроводу 6 и после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Теплота конденсации используется для подогрева холодного воздуха, который подается вентиляторами 7 из окружающей среды. Нагретый воздух 9 направляется в производственное помещение котельной, для его вентиляции и отопления. Из этого помещения воздух подается в котел, для обеспечения процесса горения. Осушенные дымовые газы 10 проходят через инерционный каплеуловитель 5, дымососом 11 подаются в теплообменник 2, где нагреваются и направляются в дымовую трубу 12. Нагрев осушенных дымовых газов необходим для предотвращения конденсации остаточных водяных паров в газоходах и дымовой трубе. Для предотвращения выпадения капель влаги в дымососе 11, уносимых осушенным потоком дымовых газов из конденсатора, часть нагретых сухих дымовых газов (до одной десятой части) из газохода 12 по газоходу 13 подается в газоход 10, где происходит испарение уносимой влаги.

Регулирование температуры нагретого воздуха осуществляют изменением расхода осушаемых дымовых газов при помощи изменения числа оборотов дымососа 11 в зависимости от температуры наружного воздуха. При снижении расхода влажных дымовых газов уменьшается аэродинамическое сопротивление газового тракта устройства, что компенсируется снижением числа оборотов дымососа 11. Дымосос 11 обеспечивает разницу давлений дымовых газов и воздуха в конденсаторе с целью предотвращения попадания дымовых газов в подогреваемый воздух.

Поверочный расчет показывает, что для котла на природном газе мощностью 6 МВт, при расходе влажных дымовых газов 1 м3/с с температурой 130°С, воздух нагревается от -15 до 30°С, при его расходе 7 м3/с. Расход конденсата 0,13 кг/с, температура осушенных дымовых газов на выходе из подогревателя 86°С. Тепловая мощность такого устройства 400 кВт. Общая площадь поверхности теплообмена 310 м2. Температура точки росы водяных паров в дымовых газах снижается с 55 до 10°С. КПД котла увеличивается на 1% только за счет подогрева холодного воздуха в количестве 0,9 м3/с, требуемого для горения природного газа. При этом, на подогрев этого воздуха приходится 51 кВт мощности устройства, а остальное тепло используется для воздушного отопления помещений. Результаты расчетов работы такого устройства при различных температурах наружного воздуха приведены в таблице 1.

В таблице 2 приведены результаты расчета вариантов исполнения устройства на другие расходы осушаемых дымовых газов, при температуре наружного воздуха -15°С.

Таблица 1
УСТРОЙСТВО УТИЛИЗАЦИИ ТЕПЛА ДЫМОВЫХ ГАЗОВ И СПОСОБ ЕГО РАБОТЫ
Расход дымовых газов Расход воздуха Температура воздуха Тепловая мощность устройства Расход полученного конденсата Температура осушенных дымовых газов Температура точки росы водяных паров в осушенных газах
до после
м 3/cм 3/c°С°С кВткг/с °C°С
0,7 5,40 37,0262 0,0990,7 19/8
0,86/2 -533,2 3160,10 89,016,2
1 7,0-10 33,2388 0,1387/4 15,1
17,0 -1529,6 4010,13 86,010,0
1 6,2-20 30,2402 0,1386,3 10,8
16,2 -2526,6 4130,13 84,85,5
Таблица 2
Расход дымовых газов Расход воздухаТемпература нагретого воздуха Тепловая мощность устройства Расход полученного конденсата Общая площадь поверхности теплообмена Температура осушенных дымовых газов Температура точки росы водяных паров в осушенных газах
м3/cм3/c°С кВткг/с м2°C°С
2 13,231,5 7910,26 62086,8 12,8
535,0 29,62007 0,651552 86,010,0
10 62,135,6 40471,30 344483,8 9,2
25155,3 32,99582 3,088265 86,318,6
50 310,832,5 190096,08 1377585,6 20,0

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Устройство утилизации тепла дымовых газов, содержащее газо-газовый теплообменник, конденсатор, инерционный каплеуловитель, газоходы, воздуховоды, вентиляторы и трубопровод, отличающееся тем, что газо-газовый поверхностный пластинчатый теплообменник выполнен по схеме противотока, в качестве конденсатора установлен поверхностный газо-воздушный пластинчатый теплообменник, в газоходе холодных осушенных дымовых газов установлен дополнительный дымосос, перед дополнительным дымососом врезан газоход подмеса части подогретых осушенных дымовых газов.

2. Способ работы устройства утилизации тепла дымовых газов, по которому дымовые газы охлаждают в газо-газовом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревают часть дутьевого воздуха, отличающийся тем, что в газо-газовом теплообменнике нагревают осушенные дымовые газы за счет охлаждения исходных дымовых газов по схеме противотока без регулирования расхода газов, конденсируют водяные пары в поверхностном газовоздушном пластинчатом теплообменнике-конденсаторе, нагревая воздух и используют нагретый воздух для отопления и покрытия потребности процесса горения, а конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле, в газоходе холодных осушенных дымовых газов компенсируют аэродинамическое сопротивление газового тракта дополнительным дымососом, перед которым подмешивают часть подогретых осушенных дымовых газов, исключая конденсацию остаточных водяных паров, уносимых потоком из конденсатора, регулирование температуры нагретого воздуха осуществляют при помощи изменения числа оборотов дымососа в зависимости от температуры наружного воздуха.

www.freepatent.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *